A fundamental AC TDDB study of BEOL ELK in advanced technology

随时间变化的栅氧化层击穿 电容 威布尔分布 压力(语言学) 电容器 电气工程 电介质 介电强度 材料科学 物理 分析化学(期刊) 电压 光电子学 栅极电介质 化学 数学 工程类 量子力学 统计 电极 色谱法 哲学 语言学 晶体管
作者
M.N. Chang,Y.-H. Lee,S. Y. Lee,Yihong Huang
标识
DOI:10.1109/iedm.2016.7838523
摘要

In this study, we thoroughly investigated AC TDDB in BEOL extreme low-k (ELK) dielectric in 10nm technology. We demonstrated that AC TDDB of ELK dielectric has better median-time-to-failure (MTTF) and also much tighter Weibull distribution than constant voltage stress (DC TDDB). In unipolar AC TDDB stress, a very significant recovery process was observed. Through the capacitance recovery analysis, the capture and emission time constants for ELK were found to be ≤ 10 -3 and ~10 -8 seconds respectively, which implies that there is low probability of charge trapping when the stress period is as fast as 10 -3 seconds; meanwhile the charge detrap happens continuously when the stress period is lower than 10 -8 seconds. As a result, the unipolar AC TDDB lifetime increased with increasing frequency. In addition, the unipolar AC TDDB improvement shows a power law dependence on the duty ratio due to a very significant charge trap/detrap effect. This is further validated through a physics-based simulation. On the other hand, bipolar AC stress caused the ion diffusion to be accompanied by the backflow Cu ion drift, thus extending the defect growth rate and improving the TDDB performance. However, no significant frequency and duty ratio dependence on the bipolar AC to DC ratio was found because the critical Cu ion concentration was constrained by the ion diffusion mechanism. This study suggests that actual circuit operation in the AC condition should have a much longer back-end TDDB lifetime than the projection by DC stress assessment for BEOL ELK dielectrics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Amai发布了新的文献求助20
刚刚
酷酷凤灵发布了新的文献求助10
刚刚
1秒前
风雨1210完成签到,获得积分10
1秒前
抗压兔完成签到 ,获得积分10
1秒前
chillin发布了新的文献求助10
1秒前
阳尧发布了新的文献求助10
2秒前
天天快乐应助troubadourelf采纳,获得10
2秒前
勤恳慕蕊发布了新的文献求助10
3秒前
3秒前
kxy完成签到,获得积分10
6秒前
6秒前
婧婧完成签到 ,获得积分10
6秒前
7秒前
8秒前
左友铭完成签到 ,获得积分10
8秒前
sweetbearm应助通~采纳,获得10
8秒前
AKLIZE完成签到,获得积分10
8秒前
刘大妮完成签到,获得积分10
9秒前
clean完成签到,获得积分20
10秒前
Lucas发布了新的文献求助10
10秒前
10秒前
朴实以松发布了新的文献求助10
10秒前
感谢橘子转发科研通微信,获得积分50
10秒前
围炉煮茶完成签到,获得积分10
11秒前
11秒前
云锋发布了新的文献求助10
12秒前
兴奋的问旋应助务实盼海采纳,获得10
12秒前
李秋静发布了新的文献求助10
12秒前
12秒前
无花果应助cookie采纳,获得10
13秒前
13秒前
斯文败类应助阳尧采纳,获得10
13秒前
14秒前
14秒前
abjz完成签到,获得积分10
14秒前
三千弱水为君饮完成签到,获得积分10
15秒前
15秒前
cata完成签到,获得积分10
15秒前
感谢79转发科研通微信,获得积分50
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794