Near infrared spectroscopy and multivariate statistical analysis as rapid tools for the geographical origin assessment of Italian hazelnuts

线性判别分析 主成分分析 集合(抽象数据类型) 多元统计 数据矩阵 计算机科学 数据集 人工智能 系统发育中的距离矩阵 模式识别(心理学) 偏最小二乘回归 样品(材料) 数学 统计 数据挖掘 化学 色谱法 系统发育树 克莱德 生物化学 组合数学 基因 程序设计语言
作者
Giuseppe Sammarco,Chiara Dall’Asta,Michele Suman
出处
期刊:Vibrational Spectroscopy [Elsevier]
卷期号:126: 103531-103531 被引量:7
标识
DOI:10.1016/j.vibspec.2023.103531
摘要

The geographical origin assessment of Italian hazelnuts is nowadays a relevant topic, aimed at the protection of provenience certificates. Near Infrared (NIR) spectroscopy could be a functional candidate for preventing and fighting illegal activities related to this matrix. The present study focuses on the exploitability of the NIR technique on the 'hazelnut chain' (fresh, roasted and paste), against the false origin declaration frauds, mainly concerning some of the best Italian varieties ('Nocciola Piemonte', 'Tonda Gentile Romana', 'Mortarella'). 216 spectra were recorded, for a total of n = 144 for the training set, and n = 72 for the validation set, considering fresh (n = 57), roasted (n = 107), and paste (n = 52) hazelnuts as different matrices. The training set sample selection was made according to a Design of Experiment (DoE), that considered diverse factors, such as harvesting year, storage shelf life, and presence of peel. The validation set was composed of blended samples generated by mixing Italian and non-Italian ones, and real samples bought from local markets. Multivariate Statistical Analysis was employed for data handling and elaboration, both unsupervised and supervised models, Principal Component Analysis, and Partial Least Square-Discriminant Analysis were built to simplify, observe, and classify the samples. A variables selection was performed by filtering the most important ones considering the Variable Importance in Projection (VIP) scores. The predictive ability of the technology was evaluated by applying Classification List and Confusion Matrix approaches to a prediction set, providing a fit of the observations of this set into the selected supervised model. The outcomes highlight valuable discrimination between authentic samples (related to two different harvesting year campaigns) with classification accuracy rates between 89 % and 100 %. Promising results about the application on blended and real samples were also obtained, especially as regards fresh and roasted hazelnuts, which presented classification accuracy rates of 81 % and 91 %. Therefore, this analytical technique could play a strategic role in the geographical origin assessment considering it is a rapid, direct, non-destructive, and cost-effective approach.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
12345完成签到,获得积分10
刚刚
司马玲完成签到 ,获得积分10
1秒前
李健的粉丝团团长应助ew.采纳,获得10
1秒前
田様应助黎其采纳,获得10
1秒前
胜利完成签到,获得积分10
1秒前
zzz发布了新的文献求助30
1秒前
大模型应助自然的含蕾采纳,获得10
2秒前
NexusExplorer应助kryie采纳,获得10
2秒前
摸鱼鱼发布了新的文献求助10
2秒前
小熊发布了新的文献求助10
2秒前
俏皮绝山发布了新的文献求助10
2秒前
陌上之心发布了新的文献求助200
2秒前
立菠萝发布了新的文献求助10
3秒前
evelyn发布了新的文献求助10
3秒前
4秒前
4秒前
乐乐酱完成签到,获得积分10
4秒前
Aria应助朝气采纳,获得10
5秒前
waiho发布了新的文献求助10
5秒前
zxrzxr123发布了新的文献求助10
5秒前
5秒前
5秒前
Pluto0o完成签到,获得积分10
6秒前
llll完成签到,获得积分10
6秒前
Mrsu完成签到 ,获得积分10
6秒前
7秒前
7秒前
weeklongwin完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
yy完成签到 ,获得积分10
8秒前
LYSM应助li采纳,获得10
8秒前
HAL发布了新的文献求助10
9秒前
萧东辰完成签到,获得积分10
9秒前
快快毕业完成签到,获得积分10
9秒前
星辰大海应助Linzy采纳,获得10
9秒前
天天快乐应助赞赞采纳,获得10
10秒前
在水一方应助glimmer采纳,获得10
10秒前
Gill完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645868
求助须知:如何正确求助?哪些是违规求助? 4769933
关于积分的说明 15032529
捐赠科研通 4804556
什么是DOI,文献DOI怎么找? 2569078
邀请新用户注册赠送积分活动 1526182
关于科研通互助平台的介绍 1485721