Near infrared spectroscopy and multivariate statistical analysis as rapid tools for the geographical origin assessment of Italian hazelnuts

线性判别分析 主成分分析 集合(抽象数据类型) 多元统计 数据矩阵 计算机科学 数据集 人工智能 系统发育中的距离矩阵 模式识别(心理学) 偏最小二乘回归 样品(材料) 数学 统计 数据挖掘 化学 色谱法 系统发育树 克莱德 生物化学 组合数学 基因 程序设计语言
作者
Giuseppe Sammarco,Chiara Dall’Asta,Michele Suman
出处
期刊:Vibrational Spectroscopy [Elsevier]
卷期号:126: 103531-103531 被引量:7
标识
DOI:10.1016/j.vibspec.2023.103531
摘要

The geographical origin assessment of Italian hazelnuts is nowadays a relevant topic, aimed at the protection of provenience certificates. Near Infrared (NIR) spectroscopy could be a functional candidate for preventing and fighting illegal activities related to this matrix. The present study focuses on the exploitability of the NIR technique on the 'hazelnut chain' (fresh, roasted and paste), against the false origin declaration frauds, mainly concerning some of the best Italian varieties ('Nocciola Piemonte', 'Tonda Gentile Romana', 'Mortarella'). 216 spectra were recorded, for a total of n = 144 for the training set, and n = 72 for the validation set, considering fresh (n = 57), roasted (n = 107), and paste (n = 52) hazelnuts as different matrices. The training set sample selection was made according to a Design of Experiment (DoE), that considered diverse factors, such as harvesting year, storage shelf life, and presence of peel. The validation set was composed of blended samples generated by mixing Italian and non-Italian ones, and real samples bought from local markets. Multivariate Statistical Analysis was employed for data handling and elaboration, both unsupervised and supervised models, Principal Component Analysis, and Partial Least Square-Discriminant Analysis were built to simplify, observe, and classify the samples. A variables selection was performed by filtering the most important ones considering the Variable Importance in Projection (VIP) scores. The predictive ability of the technology was evaluated by applying Classification List and Confusion Matrix approaches to a prediction set, providing a fit of the observations of this set into the selected supervised model. The outcomes highlight valuable discrimination between authentic samples (related to two different harvesting year campaigns) with classification accuracy rates between 89 % and 100 %. Promising results about the application on blended and real samples were also obtained, especially as regards fresh and roasted hazelnuts, which presented classification accuracy rates of 81 % and 91 %. Therefore, this analytical technique could play a strategic role in the geographical origin assessment considering it is a rapid, direct, non-destructive, and cost-effective approach.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
临渊不羡鱼关注了科研通微信公众号
1秒前
land完成签到,获得积分10
1秒前
顾矜应助ClarkLee采纳,获得10
1秒前
左旋多巴发布了新的文献求助10
2秒前
jjjjj完成签到,获得积分10
2秒前
大气的懒羊羊完成签到,获得积分10
2秒前
2秒前
QingS应助娜尼啊采纳,获得10
3秒前
茉莉雨发布了新的文献求助30
4秒前
曾经山柏发布了新的文献求助10
4秒前
τ涛发布了新的文献求助10
4秒前
5秒前
黑大帅发布了新的文献求助10
5秒前
充电宝应助YangSY采纳,获得10
6秒前
zhao发布了新的文献求助20
6秒前
6秒前
柚子发布了新的文献求助10
6秒前
7秒前
共享精神应助拉萌采纳,获得10
8秒前
wenli发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
9秒前
gomm完成签到,获得积分10
9秒前
小番茄完成签到,获得积分20
10秒前
曙光完成签到,获得积分10
10秒前
sdshi发布了新的文献求助10
11秒前
11秒前
12秒前
小李完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
12秒前
斯文败类应助wandianhekel采纳,获得150
13秒前
13秒前
13秒前
西出阳关完成签到,获得积分10
13秒前
我是老大应助尼康哥采纳,获得30
13秒前
15秒前
明月念斯人完成签到 ,获得积分10
16秒前
YQW完成签到,获得积分10
16秒前
bkagyin应助lingchen采纳,获得10
16秒前
风为裳完成签到,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
从k到英国情人 1700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5775681
求助须知:如何正确求助?哪些是违规求助? 5625393
关于积分的说明 15439397
捐赠科研通 4907935
什么是DOI,文献DOI怎么找? 2641025
邀请新用户注册赠送积分活动 1588807
关于科研通互助平台的介绍 1543677