Near infrared spectroscopy and multivariate statistical analysis as rapid tools for the geographical origin assessment of Italian hazelnuts

线性判别分析 主成分分析 集合(抽象数据类型) 多元统计 数据矩阵 计算机科学 数据集 人工智能 系统发育中的距离矩阵 模式识别(心理学) 偏最小二乘回归 样品(材料) 数学 统计 数据挖掘 化学 色谱法 系统发育树 组合数学 基因 生物化学 克莱德 程序设计语言
作者
Giuseppe Sammarco,Chiara Dall’Asta,Michele Suman
出处
期刊:Vibrational Spectroscopy [Elsevier BV]
卷期号:126: 103531-103531 被引量:7
标识
DOI:10.1016/j.vibspec.2023.103531
摘要

The geographical origin assessment of Italian hazelnuts is nowadays a relevant topic, aimed at the protection of provenience certificates. Near Infrared (NIR) spectroscopy could be a functional candidate for preventing and fighting illegal activities related to this matrix. The present study focuses on the exploitability of the NIR technique on the 'hazelnut chain' (fresh, roasted and paste), against the false origin declaration frauds, mainly concerning some of the best Italian varieties ('Nocciola Piemonte', 'Tonda Gentile Romana', 'Mortarella'). 216 spectra were recorded, for a total of n = 144 for the training set, and n = 72 for the validation set, considering fresh (n = 57), roasted (n = 107), and paste (n = 52) hazelnuts as different matrices. The training set sample selection was made according to a Design of Experiment (DoE), that considered diverse factors, such as harvesting year, storage shelf life, and presence of peel. The validation set was composed of blended samples generated by mixing Italian and non-Italian ones, and real samples bought from local markets. Multivariate Statistical Analysis was employed for data handling and elaboration, both unsupervised and supervised models, Principal Component Analysis, and Partial Least Square-Discriminant Analysis were built to simplify, observe, and classify the samples. A variables selection was performed by filtering the most important ones considering the Variable Importance in Projection (VIP) scores. The predictive ability of the technology was evaluated by applying Classification List and Confusion Matrix approaches to a prediction set, providing a fit of the observations of this set into the selected supervised model. The outcomes highlight valuable discrimination between authentic samples (related to two different harvesting year campaigns) with classification accuracy rates between 89 % and 100 %. Promising results about the application on blended and real samples were also obtained, especially as regards fresh and roasted hazelnuts, which presented classification accuracy rates of 81 % and 91 %. Therefore, this analytical technique could play a strategic role in the geographical origin assessment considering it is a rapid, direct, non-destructive, and cost-effective approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
hawaii66发布了新的文献求助10
1秒前
茉籽完成签到,获得积分10
1秒前
脑洞疼应助笑点低南霜采纳,获得10
2秒前
长弓橙子完成签到,获得积分10
2秒前
深情安青应助简单鸭子采纳,获得10
2秒前
可爱的函函应助K1采纳,获得10
3秒前
柿子吖完成签到,获得积分10
3秒前
3秒前
科研小菜鸡完成签到 ,获得积分10
4秒前
juejue333完成签到,获得积分10
4秒前
4秒前
popvich应助子乔采纳,获得20
4秒前
哭泣的幼蓉完成签到 ,获得积分10
4秒前
小龙发布了新的文献求助10
5秒前
深情安青应助SQ采纳,获得10
5秒前
Qike完成签到,获得积分20
5秒前
6秒前
要减肥白开水完成签到,获得积分10
6秒前
心灵手巧发布了新的文献求助10
6秒前
死糊完成签到 ,获得积分10
6秒前
蘑菇完成签到,获得积分10
6秒前
动听涔雨完成签到,获得积分10
6秒前
铁柱xh完成签到 ,获得积分10
6秒前
7秒前
LL完成签到,获得积分10
7秒前
chen完成签到,获得积分10
7秒前
搜集达人应助奥沙利楠采纳,获得10
8秒前
糟糕的妙海完成签到,获得积分10
8秒前
Akim应助LaTeXer采纳,获得10
8秒前
Ting完成签到 ,获得积分10
8秒前
ahosre完成签到,获得积分10
8秒前
十二完成签到,获得积分10
8秒前
烂漫的以南完成签到,获得积分10
9秒前
宁静致远完成签到,获得积分10
9秒前
学就完了完成签到,获得积分10
10秒前
orixero应助橘子海采纳,获得10
11秒前
十二发布了新的文献求助10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Why America Can't Retrench (And How it Might) 400
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
Modern Britain, 1750 to the Present (第2版) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4614581
求助须知:如何正确求助?哪些是违规求助? 4018748
关于积分的说明 12439646
捐赠科研通 3701503
什么是DOI,文献DOI怎么找? 2041241
邀请新用户注册赠送积分活动 1073983
科研通“疑难数据库(出版商)”最低求助积分说明 957639