Near infrared spectroscopy and multivariate statistical analysis as rapid tools for the geographical origin assessment of Italian hazelnuts

线性判别分析 主成分分析 集合(抽象数据类型) 多元统计 数据矩阵 计算机科学 数据集 人工智能 系统发育中的距离矩阵 模式识别(心理学) 偏最小二乘回归 样品(材料) 数学 统计 数据挖掘 化学 色谱法 系统发育树 组合数学 基因 生物化学 克莱德 程序设计语言
作者
Giuseppe Sammarco,Chiara Dall’Asta,Michele Suman
出处
期刊:Vibrational Spectroscopy [Elsevier]
卷期号:126: 103531-103531 被引量:7
标识
DOI:10.1016/j.vibspec.2023.103531
摘要

The geographical origin assessment of Italian hazelnuts is nowadays a relevant topic, aimed at the protection of provenience certificates. Near Infrared (NIR) spectroscopy could be a functional candidate for preventing and fighting illegal activities related to this matrix. The present study focuses on the exploitability of the NIR technique on the 'hazelnut chain' (fresh, roasted and paste), against the false origin declaration frauds, mainly concerning some of the best Italian varieties ('Nocciola Piemonte', 'Tonda Gentile Romana', 'Mortarella'). 216 spectra were recorded, for a total of n = 144 for the training set, and n = 72 for the validation set, considering fresh (n = 57), roasted (n = 107), and paste (n = 52) hazelnuts as different matrices. The training set sample selection was made according to a Design of Experiment (DoE), that considered diverse factors, such as harvesting year, storage shelf life, and presence of peel. The validation set was composed of blended samples generated by mixing Italian and non-Italian ones, and real samples bought from local markets. Multivariate Statistical Analysis was employed for data handling and elaboration, both unsupervised and supervised models, Principal Component Analysis, and Partial Least Square-Discriminant Analysis were built to simplify, observe, and classify the samples. A variables selection was performed by filtering the most important ones considering the Variable Importance in Projection (VIP) scores. The predictive ability of the technology was evaluated by applying Classification List and Confusion Matrix approaches to a prediction set, providing a fit of the observations of this set into the selected supervised model. The outcomes highlight valuable discrimination between authentic samples (related to two different harvesting year campaigns) with classification accuracy rates between 89 % and 100 %. Promising results about the application on blended and real samples were also obtained, especially as regards fresh and roasted hazelnuts, which presented classification accuracy rates of 81 % and 91 %. Therefore, this analytical technique could play a strategic role in the geographical origin assessment considering it is a rapid, direct, non-destructive, and cost-effective approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
亦玉完成签到,获得积分10
刚刚
路易斯完成签到,获得积分10
1秒前
吴中雪发布了新的文献求助10
1秒前
2秒前
Jasmine发布了新的文献求助10
2秒前
冰糖葫芦娃完成签到,获得积分10
2秒前
mag完成签到 ,获得积分10
2秒前
i_jueloa完成签到 ,获得积分10
2秒前
3秒前
nice1537完成签到,获得积分10
3秒前
Zurlliant完成签到,获得积分10
4秒前
大模型应助爱你一万年采纳,获得10
4秒前
米斯塔林完成签到,获得积分10
4秒前
haochi发布了新的文献求助80
5秒前
qi0625完成签到,获得积分10
5秒前
yffffff应助nature24采纳,获得10
6秒前
zywii发布了新的文献求助10
6秒前
miko完成签到,获得积分10
6秒前
梦凡发布了新的文献求助10
6秒前
洛城l完成签到,获得积分10
6秒前
zjzxs完成签到,获得积分10
7秒前
kamisama完成签到,获得积分10
8秒前
罗先斗完成签到,获得积分10
8秒前
8秒前
niumi190完成签到,获得积分0
9秒前
thuuu完成签到,获得积分10
10秒前
一个美女完成签到,获得积分10
11秒前
LIN发布了新的文献求助10
12秒前
LewisAcid发布了新的文献求助10
12秒前
想养一只猫完成签到,获得积分20
12秒前
小墩墩完成签到,获得积分10
14秒前
吴中雪完成签到,获得积分10
14秒前
隐形傲霜完成签到 ,获得积分10
15秒前
舒心砖家完成签到 ,获得积分10
15秒前
心静完成签到,获得积分20
16秒前
研友_8WzJOZ完成签到,获得积分10
16秒前
zhangnan完成签到 ,获得积分10
17秒前
毛毛完成签到,获得积分10
18秒前
LewisAcid完成签到,获得积分10
19秒前
如意的新梅完成签到,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5401990
求助须知:如何正确求助?哪些是违规求助? 4520650
关于积分的说明 14080494
捐赠科研通 4434084
什么是DOI,文献DOI怎么找? 2434382
邀请新用户注册赠送积分活动 1426601
关于科研通互助平台的介绍 1405349