Near infrared spectroscopy and multivariate statistical analysis as rapid tools for the geographical origin assessment of Italian hazelnuts

线性判别分析 主成分分析 集合(抽象数据类型) 多元统计 数据矩阵 计算机科学 数据集 人工智能 系统发育中的距离矩阵 模式识别(心理学) 偏最小二乘回归 样品(材料) 数学 统计 数据挖掘 化学 色谱法 系统发育树 克莱德 生物化学 组合数学 基因 程序设计语言
作者
Giuseppe Sammarco,Chiara Dall’Asta,Michele Suman
出处
期刊:Vibrational Spectroscopy [Elsevier]
卷期号:126: 103531-103531 被引量:7
标识
DOI:10.1016/j.vibspec.2023.103531
摘要

The geographical origin assessment of Italian hazelnuts is nowadays a relevant topic, aimed at the protection of provenience certificates. Near Infrared (NIR) spectroscopy could be a functional candidate for preventing and fighting illegal activities related to this matrix. The present study focuses on the exploitability of the NIR technique on the 'hazelnut chain' (fresh, roasted and paste), against the false origin declaration frauds, mainly concerning some of the best Italian varieties ('Nocciola Piemonte', 'Tonda Gentile Romana', 'Mortarella'). 216 spectra were recorded, for a total of n = 144 for the training set, and n = 72 for the validation set, considering fresh (n = 57), roasted (n = 107), and paste (n = 52) hazelnuts as different matrices. The training set sample selection was made according to a Design of Experiment (DoE), that considered diverse factors, such as harvesting year, storage shelf life, and presence of peel. The validation set was composed of blended samples generated by mixing Italian and non-Italian ones, and real samples bought from local markets. Multivariate Statistical Analysis was employed for data handling and elaboration, both unsupervised and supervised models, Principal Component Analysis, and Partial Least Square-Discriminant Analysis were built to simplify, observe, and classify the samples. A variables selection was performed by filtering the most important ones considering the Variable Importance in Projection (VIP) scores. The predictive ability of the technology was evaluated by applying Classification List and Confusion Matrix approaches to a prediction set, providing a fit of the observations of this set into the selected supervised model. The outcomes highlight valuable discrimination between authentic samples (related to two different harvesting year campaigns) with classification accuracy rates between 89 % and 100 %. Promising results about the application on blended and real samples were also obtained, especially as regards fresh and roasted hazelnuts, which presented classification accuracy rates of 81 % and 91 %. Therefore, this analytical technique could play a strategic role in the geographical origin assessment considering it is a rapid, direct, non-destructive, and cost-effective approach.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
无花果应助momo采纳,获得10
1秒前
Akim应助熊若宇采纳,获得10
2秒前
陈嘉伟发布了新的文献求助10
3秒前
Tooyangyang发布了新的文献求助30
3秒前
彩色淼淼完成签到,获得积分10
5秒前
烟花应助彩色枫采纳,获得10
6秒前
yoyo完成签到,获得积分10
7秒前
9秒前
共渡完成签到,获得积分10
10秒前
Jing完成签到 ,获得积分10
11秒前
Raye完成签到 ,获得积分10
12秒前
幽默的钢铁侠完成签到,获得积分20
13秒前
13秒前
yqd666777完成签到,获得积分10
14秒前
量子星尘发布了新的文献求助10
15秒前
悠米爱吃图奇完成签到 ,获得积分10
15秒前
LL发布了新的文献求助10
16秒前
重要文龙完成签到,获得积分10
17秒前
合适的听白完成签到,获得积分20
18秒前
Tooyangyang完成签到,获得积分10
18秒前
19秒前
19秒前
19秒前
量子星尘发布了新的文献求助10
20秒前
21秒前
21秒前
重要文龙发布了新的文献求助10
22秒前
科研通AI6.1应助娜娜采纳,获得10
22秒前
善学以致用应助bai采纳,获得10
23秒前
23秒前
23秒前
俏皮颤完成签到,获得积分10
24秒前
Jasper应助111采纳,获得10
24秒前
安年完成签到 ,获得积分10
25秒前
25秒前
君故发布了新的文献求助10
25秒前
熊若宇完成签到,获得积分10
26秒前
27秒前
LHS发布了新的文献求助10
28秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742464
求助须知:如何正确求助?哪些是违规求助? 5408439
关于积分的说明 15345013
捐赠科研通 4883738
什么是DOI,文献DOI怎么找? 2625271
邀请新用户注册赠送积分活动 1574132
关于科研通互助平台的介绍 1531071