Near infrared spectroscopy and multivariate statistical analysis as rapid tools for the geographical origin assessment of Italian hazelnuts

线性判别分析 主成分分析 集合(抽象数据类型) 多元统计 数据矩阵 计算机科学 数据集 人工智能 系统发育中的距离矩阵 模式识别(心理学) 偏最小二乘回归 样品(材料) 数学 统计 数据挖掘 化学 色谱法 系统发育树 组合数学 基因 生物化学 克莱德 程序设计语言
作者
Giuseppe Sammarco,Chiara Dall’Asta,Michele Suman
出处
期刊:Vibrational Spectroscopy [Elsevier]
卷期号:126: 103531-103531 被引量:4
标识
DOI:10.1016/j.vibspec.2023.103531
摘要

The geographical origin assessment of Italian hazelnuts is nowadays a relevant topic, aimed at the protection of provenience certificates. Near Infrared (NIR) spectroscopy could be a functional candidate for preventing and fighting illegal activities related to this matrix. The present study focuses on the exploitability of the NIR technique on the 'hazelnut chain' (fresh, roasted and paste), against the false origin declaration frauds, mainly concerning some of the best Italian varieties ('Nocciola Piemonte', 'Tonda Gentile Romana', 'Mortarella'). 216 spectra were recorded, for a total of n = 144 for the training set, and n = 72 for the validation set, considering fresh (n = 57), roasted (n = 107), and paste (n = 52) hazelnuts as different matrices. The training set sample selection was made according to a Design of Experiment (DoE), that considered diverse factors, such as harvesting year, storage shelf life, and presence of peel. The validation set was composed of blended samples generated by mixing Italian and non-Italian ones, and real samples bought from local markets. Multivariate Statistical Analysis was employed for data handling and elaboration, both unsupervised and supervised models, Principal Component Analysis, and Partial Least Square-Discriminant Analysis were built to simplify, observe, and classify the samples. A variables selection was performed by filtering the most important ones considering the Variable Importance in Projection (VIP) scores. The predictive ability of the technology was evaluated by applying Classification List and Confusion Matrix approaches to a prediction set, providing a fit of the observations of this set into the selected supervised model. The outcomes highlight valuable discrimination between authentic samples (related to two different harvesting year campaigns) with classification accuracy rates between 89 % and 100 %. Promising results about the application on blended and real samples were also obtained, especially as regards fresh and roasted hazelnuts, which presented classification accuracy rates of 81 % and 91 %. Therefore, this analytical technique could play a strategic role in the geographical origin assessment considering it is a rapid, direct, non-destructive, and cost-effective approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
所所应助crystal采纳,获得10
3秒前
3秒前
fdd博发布了新的文献求助30
4秒前
一一完成签到,获得积分10
5秒前
武原龙发布了新的文献求助10
7秒前
锦李完成签到,获得积分10
7秒前
7秒前
茶色啊发布了新的文献求助10
7秒前
8秒前
Lucas应助jssssssss采纳,获得10
8秒前
9秒前
12秒前
科研通AI2S应助孤独丹秋采纳,获得10
13秒前
炽岈发布了新的文献求助10
15秒前
16秒前
科研小白发布了新的文献求助10
17秒前
18秒前
重要的清完成签到,获得积分10
20秒前
20秒前
Yara.H发布了新的文献求助10
21秒前
宇月幸成发布了新的文献求助10
26秒前
28秒前
难过的花生完成签到,获得积分10
29秒前
Y哦莫哦莫完成签到,获得积分10
29秒前
乐观忆灵应助奋斗的幼荷采纳,获得20
30秒前
30秒前
合适靖儿发布了新的文献求助10
31秒前
追寻紫安应助科研通管家采纳,获得10
34秒前
科研通AI2S应助科研通管家采纳,获得10
35秒前
传奇3应助科研通管家采纳,获得10
35秒前
科研通AI2S应助科研通管家采纳,获得10
35秒前
sissiarno应助科研通管家采纳,获得30
35秒前
慕青应助科研通管家采纳,获得10
35秒前
共享精神应助科研通管家采纳,获得10
35秒前
梦之凌云应助科研通管家采纳,获得30
35秒前
爆米花应助科研通管家采纳,获得10
36秒前
HMONEY应助科研通管家采纳,获得10
36秒前
行僧完成签到,获得积分10
36秒前
香蕉觅云应助科研通管家采纳,获得10
36秒前
37秒前
高分求助中
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
CLSI EP47 Evaluation of Reagent Carryover Effects on Test Results, 1st Edition 800
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
Retention of title in secured transactions law from a creditor's perspective: A comparative analysis of selected (non-)functional approaches 500
"Sixth plenary session of the Eighth Central Committee of the Communist Party of China" 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3055393
求助须知:如何正确求助?哪些是违规求助? 2712170
关于积分的说明 7430007
捐赠科研通 2356998
什么是DOI,文献DOI怎么找? 1248385
科研通“疑难数据库(出版商)”最低求助积分说明 606700
版权声明 596093