Near infrared spectroscopy and multivariate statistical analysis as rapid tools for the geographical origin assessment of Italian hazelnuts

线性判别分析 主成分分析 集合(抽象数据类型) 多元统计 数据矩阵 计算机科学 数据集 人工智能 系统发育中的距离矩阵 模式识别(心理学) 偏最小二乘回归 样品(材料) 数学 统计 数据挖掘 化学 色谱法 系统发育树 组合数学 基因 生物化学 克莱德 程序设计语言
作者
Giuseppe Sammarco,Chiara Dall’Asta,Michele Suman
出处
期刊:Vibrational Spectroscopy [Elsevier BV]
卷期号:126: 103531-103531 被引量:7
标识
DOI:10.1016/j.vibspec.2023.103531
摘要

The geographical origin assessment of Italian hazelnuts is nowadays a relevant topic, aimed at the protection of provenience certificates. Near Infrared (NIR) spectroscopy could be a functional candidate for preventing and fighting illegal activities related to this matrix. The present study focuses on the exploitability of the NIR technique on the 'hazelnut chain' (fresh, roasted and paste), against the false origin declaration frauds, mainly concerning some of the best Italian varieties ('Nocciola Piemonte', 'Tonda Gentile Romana', 'Mortarella'). 216 spectra were recorded, for a total of n = 144 for the training set, and n = 72 for the validation set, considering fresh (n = 57), roasted (n = 107), and paste (n = 52) hazelnuts as different matrices. The training set sample selection was made according to a Design of Experiment (DoE), that considered diverse factors, such as harvesting year, storage shelf life, and presence of peel. The validation set was composed of blended samples generated by mixing Italian and non-Italian ones, and real samples bought from local markets. Multivariate Statistical Analysis was employed for data handling and elaboration, both unsupervised and supervised models, Principal Component Analysis, and Partial Least Square-Discriminant Analysis were built to simplify, observe, and classify the samples. A variables selection was performed by filtering the most important ones considering the Variable Importance in Projection (VIP) scores. The predictive ability of the technology was evaluated by applying Classification List and Confusion Matrix approaches to a prediction set, providing a fit of the observations of this set into the selected supervised model. The outcomes highlight valuable discrimination between authentic samples (related to two different harvesting year campaigns) with classification accuracy rates between 89 % and 100 %. Promising results about the application on blended and real samples were also obtained, especially as regards fresh and roasted hazelnuts, which presented classification accuracy rates of 81 % and 91 %. Therefore, this analytical technique could play a strategic role in the geographical origin assessment considering it is a rapid, direct, non-destructive, and cost-effective approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
vivia发布了新的文献求助10
2秒前
研友_8RyzBZ发布了新的文献求助10
2秒前
2秒前
rubyyoyo发布了新的文献求助10
2秒前
帕荣荣发布了新的文献求助10
3秒前
3秒前
碧蓝香水发布了新的文献求助10
3秒前
4秒前
嗷唔一口吃掉完成签到,获得积分10
5秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
Erika发布了新的文献求助10
7秒前
7秒前
穆振家发布了新的文献求助10
7秒前
7秒前
AnonChihaya完成签到,获得积分20
9秒前
Hexagram发布了新的文献求助10
9秒前
跳跃的访琴完成签到 ,获得积分10
10秒前
11秒前
11秒前
一颗对科研一无所知的鸭蛋完成签到,获得积分10
12秒前
玛卡巴卡发布了新的文献求助10
14秒前
15秒前
小蘑菇应助rubyyoyo采纳,获得10
15秒前
17秒前
研友_8RyzBZ完成签到,获得积分20
17秒前
大模型应助soda采纳,获得10
17秒前
嘿嘿应助winwin采纳,获得10
18秒前
穆振家完成签到,获得积分10
19秒前
20秒前
fhl完成签到,获得积分10
21秒前
芜潼应助可爱邓邓采纳,获得10
22秒前
22秒前
无情的匪发布了新的文献求助10
23秒前
24秒前
zhy完成签到,获得积分10
24秒前
25秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Effective Learning and Mental Wellbeing 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3976058
求助须知:如何正确求助?哪些是违规求助? 3520294
关于积分的说明 11202245
捐赠科研通 3256804
什么是DOI,文献DOI怎么找? 1798471
邀请新用户注册赠送积分活动 877610
科研通“疑难数据库(出版商)”最低求助积分说明 806496