High performance for bone age estimation with an artificial intelligence solution

医学 骨龄 置信区间 年龄组 射线照相术 儿科 核医学 人口学 外科 内科学 社会学
作者
Toan Nguyen,Anne-Laure Hermann,Jeanne Ventre,Alexis Ducarouge,Aloïs Pourchot,Vincent Marty,Nor-Eddine Regnard,Ali Guermazi
出处
期刊:Diagnostic and interventional imaging [Elsevier]
卷期号:104 (7-8): 330-336 被引量:3
标识
DOI:10.1016/j.diii.2023.04.003
摘要

The purpose of this study was to compare the performance of an artificial intelligence (AI) solution to that of a senior general radiologist for bone age assessment. Anteroposterior hand radiographs of eight boys and eight girls from each age interval between five and 17 year-old from four different radiology departments were retrospectively collected. Two board-certified pediatric radiologists with knowledge of the sex and chronological age of the patients independently estimated the Greulich and Pyle bone age to determine the standard of reference. A senior general radiologist not specialized in pediatric radiology (further referred to as “the reader”) then determined the bone age with knowledge of the sex and chronological age. The results of the reader were then compared to those of the AI solution using mean absolute error (MAE) in age estimation. The study dataset included a total of 206 patients (102 boys of mean chronological age of 10.9 ± 3.7 [SD] years, 104 girls of mean chronological age of 11 ± 3.7 [SD] years). For both sexes, the AI algorithm showed a significantly lower MAE than the reader (P < 0.007). In boys, the MAE was 0.488 years (95% confidence interval [CI]: 0.28–0.44; r2 = 0.978) for the AI algorithm and 0.771 years (95% CI: 0.64–0.90; r2 = 0.94) for the reader. In girls, the MAE was 0.494 years (95% CI: 0.41–0.56; r2 = 0.973) for the AI algorithm and 0.673 years (95% CI: 0.54–0.81; r2 = 0.934) for the reader. The AI solution better estimates the Greulich and Pyle bone age than a general radiologist does.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Ava应助keal采纳,获得10
刚刚
魅傲发布了新的文献求助20
刚刚
伍洁完成签到 ,获得积分10
3秒前
3秒前
jopaul完成签到,获得积分10
3秒前
邱帅完成签到,获得积分10
7秒前
干净凌雪关注了科研通微信公众号
9秒前
明亮的啤酒完成签到,获得积分10
9秒前
tansl1989发布了新的文献求助10
10秒前
10秒前
1236应助勤奋的刺猬采纳,获得10
10秒前
NexusExplorer应助RW采纳,获得10
10秒前
wfy1227完成签到,获得积分10
12秒前
12秒前
13秒前
木木诺玉完成签到,获得积分10
14秒前
科研通AI2S应助Dou_Xiaowen采纳,获得10
14秒前
14秒前
15秒前
tansl1989完成签到,获得积分20
17秒前
fifteen发布了新的文献求助10
18秒前
zhouzhou完成签到,获得积分10
21秒前
迅速易云完成签到,获得积分10
23秒前
共享精神应助欢--采纳,获得10
23秒前
干净凌雪发布了新的文献求助50
25秒前
sunboy14521完成签到 ,获得积分10
25秒前
李爱国应助lkalvnldv采纳,获得10
26秒前
30秒前
清秀笑晴完成签到 ,获得积分10
32秒前
照照完成签到,获得积分10
32秒前
勤奋的刺猬完成签到,获得积分10
32秒前
小梅完成签到,获得积分10
32秒前
八大山人发布了新的文献求助10
32秒前
34秒前
34秒前
李爱国应助尔信采纳,获得10
36秒前
婷婷应助咩咩采纳,获得10
36秒前
38秒前
38秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3164329
求助须知:如何正确求助?哪些是违规求助? 2815119
关于积分的说明 7907636
捐赠科研通 2474677
什么是DOI,文献DOI怎么找? 1317626
科研通“疑难数据库(出版商)”最低求助积分说明 631871
版权声明 602234