Spectral super-resolution meets deep learning: Achievements and challenges

计算机科学 高光谱成像 深度学习 人工智能 稳健性(进化) RGB颜色模型 水准点(测量) 插值(计算机图形学) 残余物 模式识别(心理学) 计算机视觉 算法 图像(数学) 地理 化学 基因 生物化学 大地测量学
作者
Jiang He,Qiangqiang Yuan,Jie Li,Yi Xiao,Denghong Liu,Huanfeng Shen,Liangpei Zhang
出处
期刊:Information Fusion [Elsevier]
卷期号:97: 101812-101812 被引量:23
标识
DOI:10.1016/j.inffus.2023.101812
摘要

Spectral super-resolution (sSR) is a very important technique to obtain hyperspectral images from only RGB images, which can effectively overcome the high acquisition cost and low spatial resolution of hyperspectral imaging. From linear interpolation to sparse recovery, spectral super-resolution have gained rapid development. In the past five years, as deep learning has taken off in various computer vision tasks, spectral super-resolution algorithms based on deep learning have also exploded. From residual learning to physical modeling, deep learning-based models used in spectral super-resolution is multifarious. This paper has collected almost all deep learning-based sSR algorithms and reviewed them according to their main contributions, involving network architecture, feature extraction, and physical modeling. This paper proposed a benchmark about deep learning-based spectral super-resolution algorithms: https://github.com/JiangHe96/DL4sSR, and besides spectral recovery, their potential in colorization and spectral compressive imaging is also systematically discussed. Furthermore, we presented our views about challenges and possible further trends of deep learning-based sSR. Light-weight model architecture with generalization is crucial to in-camera processing. Model robustness should be considered carefully to manage data with various degradation. Finally, multi-task sSR meets the multiple needs of humans and meanwhile achieves inter-task mutual improvement, including low-level with low-level, low-level with high-level, and data reconstruction with parameter inversion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
重要英姑完成签到,获得积分10
1秒前
Sophie_W完成签到,获得积分10
1秒前
重要文龙完成签到,获得积分10
2秒前
lambda发布了新的文献求助10
2秒前
3秒前
飞云发布了新的文献求助10
3秒前
fjg完成签到,获得积分10
3秒前
linlin发布了新的文献求助10
3秒前
耍酷梦桃发布了新的文献求助10
4秒前
我是老大应助平凡的七月采纳,获得10
4秒前
汉堡包应助phylicia采纳,获得10
4秒前
小星星完成签到,获得积分10
4秒前
5秒前
5秒前
重要文龙发布了新的文献求助10
5秒前
christal完成签到,获得积分10
5秒前
cheng发布了新的文献求助10
6秒前
鳗鱼盼夏完成签到,获得积分10
6秒前
yufanhui应助Happy采纳,获得10
6秒前
cfer完成签到,获得积分10
7秒前
Sailor完成签到,获得积分10
9秒前
9秒前
大方太清完成签到,获得积分10
9秒前
shengjian86发布了新的文献求助10
10秒前
de完成签到,获得积分10
11秒前
ding应助Joel采纳,获得10
11秒前
木子梨狸完成签到,获得积分10
12秒前
yzz完成签到,获得积分10
12秒前
12秒前
13秒前
baimiaomuzi发布了新的文献求助10
13秒前
南念完成签到,获得积分10
13秒前
明理青寒完成签到,获得积分10
14秒前
Lz完成签到,获得积分10
14秒前
14秒前
SAN发布了新的文献求助20
14秒前
吴媛媛发布了新的文献求助10
17秒前
17秒前
充电宝应助Triptolide采纳,获得10
18秒前
南念发布了新的文献求助10
18秒前
高分求助中
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 400
Artificial Intelligence: Foundations of ComputationalAgents, 3rd Edition Solution Manual and Instructor Resources 360
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3308081
求助须知:如何正确求助?哪些是违规求助? 2941598
关于积分的说明 8504517
捐赠科研通 2616249
什么是DOI,文献DOI怎么找? 1429510
科研通“疑难数据库(出版商)”最低求助积分说明 663787
邀请新用户注册赠送积分活动 648720