杂原子
密度泛函理论
吸附
分子
人工神经网络
图论
Atom(片上系统)
催化作用
计算化学
图形
化学
计算机科学
材料科学
生物系统
数学
物理化学
理论计算机科学
有机化学
人工智能
组合数学
生物
嵌入式系统
戒指(化学)
作者
Sergio Pablo-García,Santiago Morandi,Rodrigo A. Vargas-Hernández,Kjell Jorner,Žarko Ivković,Núria López,Alán Aspuru-Guzik
标识
DOI:10.1038/s43588-023-00437-y
摘要
Abstract Modeling in heterogeneous catalysis requires the extensive evaluation of the energy of molecules adsorbed on surfaces. This is done via density functional theory but for large organic molecules it requires enormous computational time, compromising the viability of the approach. Here we present GAME-Net, a graph neural network to quickly evaluate the adsorption energy. GAME-Net is trained on a well-balanced chemically diverse dataset with C 1–4 molecules with functional groups including N, O, S and C 6–10 aromatic rings. The model yields a mean absolute error of 0.18 eV on the test set and is 6 orders of magnitude faster than density functional theory. Applied to biomass and plastics (up to 30 heteroatoms), adsorption energies are predicted with a mean absolute error of 0.016 eV per atom. The framework represents a tool for the fast screening of catalytic materials, particularly for systems that cannot be simulated by traditional methods.
科研通智能强力驱动
Strongly Powered by AbleSci AI