Application of deep learning to predict the low serum albumin in new hemodialysis patients

白蛋白 医学 血液透析 内科学 肌酐 血清白蛋白 逻辑回归 胃肠病学 分位数 统计 数学
作者
Cheng-Hong Yang,Yin-Syuan Chen,Jin‐Bor Chen,Hsiu‐Chen Huang,Li‐Yeh Chuang
出处
期刊:Nutrition & Metabolism [BioMed Central]
卷期号:20 (1) 被引量:1
标识
DOI:10.1186/s12986-023-00746-z
摘要

Abstract Background Serum albumin level is a crucial nutritional indicator for patients on dialysis. Approximately one-third of patients on hemodialysis (HD) have protein malnutrition. Therefore, the serum albumin level of patients on HD is strongly correlated with mortality. Methods In study, the data sets were obtained from the longitudinal electronic health records of the largest HD center in Taiwan from July 2011 to December 2015, included 1,567 new patients on HD who met the inclusion criteria. Multivariate logistic regression was performed to evaluate the association of clinical factors with low serum albumin, and the grasshopper optimization algorithm (GOA) was used for feature selection. The quantile g-computation method was used to calculate the weight ratio of each factor. Machine learning and deep learning (DL) methods were used to predict the low serum albumin. The area under the curve (AUC) and accuracy were calculated to determine the model performance. Results Age, gender, hypertension, hemoglobin, iron, ferritin, sodium, potassium, calcium, creatinine, alkaline phosphatase, and triglyceride levels were significantly associated with low serum albumin. The AUC and accuracy of the GOA quantile g-computation weight model combined with the Bi-LSTM method were 98% and 95%, respectively. Conclusion The GOA method was able to rapidly identify the optimal combination of factors associated with serum albumin in patients on HD, and the quantile g-computation with DL methods could determine the most effective GOA quantile g-computation weight prediction model. The serum albumin status of patients on HD can be predicted by the proposed model and accordingly provide patients with better a prognostic care and treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dachang关注了科研通微信公众号
刚刚
情怀应助123采纳,获得10
2秒前
penny完成签到,获得积分10
2秒前
想毕业完成签到,获得积分10
4秒前
123完成签到,获得积分10
4秒前
领导范儿应助dbl采纳,获得10
5秒前
5秒前
George完成签到,获得积分10
6秒前
所所应助tagate采纳,获得10
8秒前
Bo0108完成签到,获得积分10
8秒前
8秒前
月神满月完成签到,获得积分10
9秒前
gej发布了新的文献求助10
11秒前
kiki完成签到,获得积分20
11秒前
12秒前
司空豁发布了新的文献求助30
12秒前
宰宰小熊发布了新的文献求助10
12秒前
12秒前
13秒前
Rain发布了新的文献求助10
14秒前
14秒前
15秒前
kiki发布了新的文献求助10
16秒前
xyx发布了新的文献求助10
17秒前
ding应助Duxian采纳,获得10
18秒前
18秒前
19秒前
老王发布了新的文献求助10
19秒前
可爱的函函应助Rain采纳,获得10
19秒前
852应助害怕的板凳采纳,获得10
20秒前
20秒前
彩色青雪发布了新的文献求助20
20秒前
21秒前
22秒前
思维隋发布了新的文献求助30
22秒前
丘比特应助LAIJINSHENG采纳,获得10
23秒前
英姑应助ZHANG采纳,获得10
23秒前
23秒前
chel发布了新的文献求助30
24秒前
木子26年要毕业完成签到 ,获得积分10
25秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979611
求助须知:如何正确求助?哪些是违规求助? 3523559
关于积分的说明 11218024
捐赠科研通 3261063
什么是DOI,文献DOI怎么找? 1800385
邀请新用户注册赠送积分活动 879079
科研通“疑难数据库(出版商)”最低求助积分说明 807160