Application of deep learning to predict the low serum albumin in new hemodialysis patients

白蛋白 医学 血液透析 内科学 肌酐 血清白蛋白 逻辑回归 胃肠病学 分位数 统计 数学
作者
Cheng-Hong Yang,Yin-Syuan Chen,Jin‐Bor Chen,Hsiu‐Chen Huang,Li‐Yeh Chuang
出处
期刊:Nutrition & Metabolism [Springer Nature]
卷期号:20 (1) 被引量:1
标识
DOI:10.1186/s12986-023-00746-z
摘要

Abstract Background Serum albumin level is a crucial nutritional indicator for patients on dialysis. Approximately one-third of patients on hemodialysis (HD) have protein malnutrition. Therefore, the serum albumin level of patients on HD is strongly correlated with mortality. Methods In study, the data sets were obtained from the longitudinal electronic health records of the largest HD center in Taiwan from July 2011 to December 2015, included 1,567 new patients on HD who met the inclusion criteria. Multivariate logistic regression was performed to evaluate the association of clinical factors with low serum albumin, and the grasshopper optimization algorithm (GOA) was used for feature selection. The quantile g-computation method was used to calculate the weight ratio of each factor. Machine learning and deep learning (DL) methods were used to predict the low serum albumin. The area under the curve (AUC) and accuracy were calculated to determine the model performance. Results Age, gender, hypertension, hemoglobin, iron, ferritin, sodium, potassium, calcium, creatinine, alkaline phosphatase, and triglyceride levels were significantly associated with low serum albumin. The AUC and accuracy of the GOA quantile g-computation weight model combined with the Bi-LSTM method were 98% and 95%, respectively. Conclusion The GOA method was able to rapidly identify the optimal combination of factors associated with serum albumin in patients on HD, and the quantile g-computation with DL methods could determine the most effective GOA quantile g-computation weight prediction model. The serum albumin status of patients on HD can be predicted by the proposed model and accordingly provide patients with better a prognostic care and treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
lulu猪发布了新的文献求助10
1秒前
2秒前
开朗渊思发布了新的文献求助10
2秒前
lemonfang发布了新的文献求助10
3秒前
海绵树完成签到 ,获得积分10
4秒前
4秒前
华仔应助孝铮采纳,获得10
4秒前
出金多多发布了新的文献求助10
6秒前
超级无心完成签到,获得积分10
6秒前
6秒前
科目三应助仔拉采纳,获得10
6秒前
甘楽完成签到,获得积分10
7秒前
kunkun发布了新的文献求助30
8秒前
陶醉觅夏发布了新的文献求助10
9秒前
小李发布了新的文献求助10
10秒前
yangxinLuo完成签到,获得积分20
10秒前
开朗渊思完成签到,获得积分10
10秒前
11秒前
曹帅发布了新的文献求助10
11秒前
废名完成签到,获得积分10
11秒前
在水一方应助lemonfang采纳,获得10
13秒前
14秒前
人小鸭儿大完成签到 ,获得积分10
15秒前
山山而川完成签到 ,获得积分10
15秒前
rosalieshi应助科研通管家采纳,获得30
15秒前
我是老大应助科研通管家采纳,获得10
15秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
烟花应助科研通管家采纳,获得10
16秒前
CipherSage应助科研通管家采纳,获得30
16秒前
慕青应助科研通管家采纳,获得10
16秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
Orange应助科研通管家采纳,获得10
16秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
酷波er应助科研通管家采纳,获得10
16秒前
17秒前
完美世界应助Zachary采纳,获得10
18秒前
nn发布了新的文献求助10
19秒前
疯狂老登完成签到,获得积分10
19秒前
小李完成签到,获得积分10
21秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137471
求助须知:如何正确求助?哪些是违规求助? 2788496
关于积分的说明 7786856
捐赠科研通 2444725
什么是DOI,文献DOI怎么找? 1300018
科研通“疑难数据库(出版商)”最低求助积分说明 625752
版权声明 601023