ContourGAN: Auto‐contouring of organs at risk in abdomen computed tomography images using generative adversarial network

轮廓 分割 计算机科学 人工智能 背景(考古学) 计算机断层摄影术 深度学习 生成对抗网络 放射科 医学 生物 计算机图形学(图像) 古生物学
作者
Seenia Francis,P. B. Jayaraj,P. N. Pournami,Niyas Puzhakkal
出处
期刊:International Journal of Imaging Systems and Technology [Wiley]
标识
DOI:10.1002/ima.22901
摘要

Accurately identifying and contouring the organs at risk (OARs) is a crucial step in radiation treatment planning for precise dose calculation. This task becomes especially challenging in computed tomography (CT) images due to the irregular boundaries of the organs under study. The method currently employed in clinical practice is the manual contouring of CT images, which tends to be highly tedious and time-consuming. The results are also prone to variations depending on the observer's skill level, environment, or equipment types. A deep learning-based automatic contouring technique for segmenting OARs would help eliminate these problems and generate consistent results with minimal time and human effort. Our approach is to design a conditional generative adversarial network (GAN)-based technique for the semantic segmentation of OARs in abdominal CT images. The residual blocks of the generator network have a multi-scale context layer that explores more generic characteristics, greatly enhancing performance and lowering losses. A comparative analysis is undertaken based on various assessment measures widely employed in segmentation. The results show substantial improvement, with mean dice scores of 98.0%, 96.6%, 98.2%, and 86.1% for the respective organs—liver, kidney, spleen, and pancreas—in the abdominal CT. The proposed GAN-based model could accurately segment the four abdominal organs, including the liver, kidney, spleen, and pancreas. The obtained results prove that the suggested model is able to compete with existing state-of-the-art abdominal OAR segmentation techniques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
凯呀月啊应助123采纳,获得10
刚刚
韩琳发布了新的文献求助10
刚刚
1秒前
3秒前
隐形曼青应助豆豆采纳,获得10
3秒前
3秒前
SciGPT应助天真的宝马采纳,获得10
5秒前
帅小主发布了新的文献求助10
5秒前
正在下雨发布了新的文献求助10
6秒前
所所应助科多兽骑士采纳,获得10
6秒前
7秒前
8秒前
Rain发布了新的文献求助10
8秒前
xuxu~完成签到,获得积分20
8秒前
优秀司炉员完成签到,获得积分10
8秒前
WM发布了新的文献求助10
9秒前
9秒前
香蕉觅云应助JEFFREYJIA采纳,获得10
11秒前
xuxu~发布了新的文献求助10
11秒前
11秒前
12秒前
fleefly完成签到,获得积分10
13秒前
sgz666完成签到,获得积分10
14秒前
15秒前
OYE发布了新的文献求助20
16秒前
16秒前
17秒前
17秒前
研友_VZG7GZ应助Ann采纳,获得10
17秒前
nihao完成签到,获得积分10
18秒前
小小富应助正在下雨采纳,获得10
18秒前
18秒前
褚香旋发布了新的文献求助10
19秒前
19秒前
19秒前
qpzn完成签到,获得积分10
21秒前
vkey完成签到,获得积分10
22秒前
晴烟ZYM发布了新的文献求助30
22秒前
orixero应助1028181661采纳,获得10
22秒前
Stroeve发布了新的文献求助10
23秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992840
求助须知:如何正确求助?哪些是违规求助? 3533621
关于积分的说明 11263330
捐赠科研通 3273416
什么是DOI,文献DOI怎么找? 1806029
邀请新用户注册赠送积分活动 882889
科研通“疑难数据库(出版商)”最低求助积分说明 809619