亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

ContourGAN: Auto‐contouring of organs at risk in abdomen computed tomography images using generative adversarial network

轮廓 分割 计算机科学 人工智能 背景(考古学) 计算机断层摄影术 深度学习 生成对抗网络 放射科 医学 生物 计算机图形学(图像) 古生物学
作者
Seenia Francis,P. B. Jayaraj,P. N. Pournami,Niyas Puzhakkal
出处
期刊:International Journal of Imaging Systems and Technology [Wiley]
标识
DOI:10.1002/ima.22901
摘要

Accurately identifying and contouring the organs at risk (OARs) is a crucial step in radiation treatment planning for precise dose calculation. This task becomes especially challenging in computed tomography (CT) images due to the irregular boundaries of the organs under study. The method currently employed in clinical practice is the manual contouring of CT images, which tends to be highly tedious and time-consuming. The results are also prone to variations depending on the observer's skill level, environment, or equipment types. A deep learning-based automatic contouring technique for segmenting OARs would help eliminate these problems and generate consistent results with minimal time and human effort. Our approach is to design a conditional generative adversarial network (GAN)-based technique for the semantic segmentation of OARs in abdominal CT images. The residual blocks of the generator network have a multi-scale context layer that explores more generic characteristics, greatly enhancing performance and lowering losses. A comparative analysis is undertaken based on various assessment measures widely employed in segmentation. The results show substantial improvement, with mean dice scores of 98.0%, 96.6%, 98.2%, and 86.1% for the respective organs—liver, kidney, spleen, and pancreas—in the abdominal CT. The proposed GAN-based model could accurately segment the four abdominal organs, including the liver, kidney, spleen, and pancreas. The obtained results prove that the suggested model is able to compete with existing state-of-the-art abdominal OAR segmentation techniques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陈词丶完成签到,获得积分10
刚刚
Ibuprofen完成签到,获得积分10
刚刚
mellow发布了新的文献求助10
12秒前
13秒前
充电宝应助ylh采纳,获得10
21秒前
浮游应助科研通管家采纳,获得10
26秒前
ding应助科研通管家采纳,获得10
26秒前
浮游应助科研通管家采纳,获得10
26秒前
浮游应助科研通管家采纳,获得10
26秒前
顾矜应助科研通管家采纳,获得10
26秒前
浮游应助科研通管家采纳,获得10
26秒前
Criminology34应助科研通管家采纳,获得10
27秒前
27秒前
27秒前
ylh发布了新的文献求助10
33秒前
风筝鱼完成签到 ,获得积分10
34秒前
淡定成风完成签到,获得积分0
35秒前
Maryamgvl完成签到 ,获得积分10
36秒前
结实智宸完成签到,获得积分10
42秒前
ylh完成签到,获得积分10
53秒前
54秒前
suresure发布了新的文献求助10
58秒前
59秒前
1分钟前
1分钟前
Ava应助suresure采纳,获得10
1分钟前
善学以致用应助suresure采纳,获得10
1分钟前
香豆素完成签到 ,获得积分10
1分钟前
成就夜柳发布了新的文献求助10
1分钟前
可爱的函函应助成就夜柳采纳,获得10
1分钟前
JamesPei应助chuchu采纳,获得10
1分钟前
zl13332完成签到 ,获得积分10
1分钟前
潇潇发布了新的文献求助10
1分钟前
1分钟前
misstwo完成签到,获得积分10
1分钟前
1分钟前
个性紫雪关注了科研通微信公众号
1分钟前
11发布了新的文献求助30
1分钟前
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5291256
求助须知:如何正确求助?哪些是违规求助? 4442357
关于积分的说明 13829738
捐赠科研通 4325330
什么是DOI,文献DOI怎么找? 2374146
邀请新用户注册赠送积分活动 1369487
关于科研通互助平台的介绍 1333670