ContourGAN: Auto‐contouring of organs at risk in abdomen computed tomography images using generative adversarial network

轮廓 分割 计算机科学 人工智能 背景(考古学) 计算机断层摄影术 深度学习 生成对抗网络 放射科 医学 生物 计算机图形学(图像) 古生物学
作者
Seenia Francis,P. B. Jayaraj,P. N. Pournami,Niyas Puzhakkal
出处
期刊:International Journal of Imaging Systems and Technology [Wiley]
标识
DOI:10.1002/ima.22901
摘要

Accurately identifying and contouring the organs at risk (OARs) is a crucial step in radiation treatment planning for precise dose calculation. This task becomes especially challenging in computed tomography (CT) images due to the irregular boundaries of the organs under study. The method currently employed in clinical practice is the manual contouring of CT images, which tends to be highly tedious and time-consuming. The results are also prone to variations depending on the observer's skill level, environment, or equipment types. A deep learning-based automatic contouring technique for segmenting OARs would help eliminate these problems and generate consistent results with minimal time and human effort. Our approach is to design a conditional generative adversarial network (GAN)-based technique for the semantic segmentation of OARs in abdominal CT images. The residual blocks of the generator network have a multi-scale context layer that explores more generic characteristics, greatly enhancing performance and lowering losses. A comparative analysis is undertaken based on various assessment measures widely employed in segmentation. The results show substantial improvement, with mean dice scores of 98.0%, 96.6%, 98.2%, and 86.1% for the respective organs—liver, kidney, spleen, and pancreas—in the abdominal CT. The proposed GAN-based model could accurately segment the four abdominal organs, including the liver, kidney, spleen, and pancreas. The obtained results prove that the suggested model is able to compete with existing state-of-the-art abdominal OAR segmentation techniques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
笑雨洗铅华完成签到,获得积分10
4秒前
4秒前
上官若男应助时尚捕采纳,获得10
5秒前
充电宝应助缓慢的梦山采纳,获得10
6秒前
Autken发布了新的文献求助10
6秒前
酷波er应助T拐拐采纳,获得10
7秒前
7秒前
白白熊完成签到 ,获得积分10
7秒前
12秒前
HAN应助LW采纳,获得10
13秒前
HEIKU应助林狗采纳,获得10
13秒前
13秒前
Lilith完成签到,获得积分10
13秒前
缓慢的梦山给缓慢的梦山的求助进行了留言
14秒前
14秒前
十七声禾语完成签到 ,获得积分10
16秒前
明芷蝶发布了新的文献求助10
17秒前
温柔发布了新的文献求助10
17秒前
时尚捕发布了新的文献求助10
18秒前
隐形曼青应助hhh采纳,获得10
18秒前
19秒前
20秒前
23秒前
123发布了新的文献求助10
23秒前
小房子完成签到 ,获得积分10
24秒前
时尚捕完成签到,获得积分10
24秒前
mayue发布了新的文献求助10
26秒前
活力红酒发布了新的文献求助10
28秒前
隐形曼青应助温柔采纳,获得10
30秒前
31秒前
maox1aoxin应助never采纳,获得20
32秒前
33秒前
执着的怜珊完成签到,获得积分10
34秒前
吴未完成签到,获得积分10
34秒前
CoCo完成签到 ,获得积分10
35秒前
luxixi发布了新的文献求助10
36秒前
36秒前
HAN发布了新的文献求助20
38秒前
38秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3313702
求助须知:如何正确求助?哪些是违规求助? 2945999
关于积分的说明 8527896
捐赠科研通 2621588
什么是DOI,文献DOI怎么找? 1433935
科研通“疑难数据库(出版商)”最低求助积分说明 665098
邀请新用户注册赠送积分活动 650651