Rapid detection of Penaeus vannamei diseases via an improved LeNet

对虾 生物 渔业 生物技术 食品科学 小虾
作者
Qingping Wang,Cheng Qian,Ping Nie,Minger Ye
出处
期刊:Aquacultural Engineering [Elsevier BV]
卷期号:100: 102296-102296 被引量:3
标识
DOI:10.1016/j.aquaeng.2022.102296
摘要

Shrimp disease is a greatly important factor in the culture of Penaeus vannamei , the shrimp species with the highest yield in the world aquaculture industry. Hepatopancreatic necrosis disease (HPND, 37%), red body disease (RBD, 26%), and whitish muscle disease (WMD, 18%) were the most common Penaeus vannamei diseases, all of which are usually classified and identified by two kinds of detection (manual detection and germs purifying method). Most of these detections suffer from the class low accuracy, too complex, or too costly. In this study, we tackle this situation with an improved LeNet, which includes modifying model parameters and computational methods. More particularly, this study proposes a convolutional neural networks (CNN) model that is based on LeNet network framework and can reduce parameters and accelerate calculation. To offer improvements in classification and identification, we increase the number of feature maps. Meanwhile, to firstly take denoise and then strengthen characteristic in pretreatment, HSV color space conversion and Gaussian noise with a level of 20 are led into. We conclude that the model generates the precision at about 96.1 percent when the weight parameter learning rate is 0.002 and the number of iterations is 120 after being trained and validated. The study has made tremendous progress in the rapid detection of Penaeus vannamei diseases by providing an effective technological path and suggesting the possibility of realizing early disease warnings in future works.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小小小珂卿完成签到,获得积分10
1秒前
Candice发布了新的文献求助10
2秒前
2秒前
彭于晏应助呆呆采纳,获得10
2秒前
2秒前
情怀应助美好斓采纳,获得10
3秒前
4秒前
4秒前
lai完成签到,获得积分10
5秒前
6秒前
123完成签到,获得积分10
6秒前
Ava应助ll采纳,获得10
6秒前
billie完成签到,获得积分10
7秒前
FY完成签到 ,获得积分10
7秒前
靓丽代柔发布了新的文献求助10
7秒前
8秒前
8秒前
JamesPei应助hbq采纳,获得10
9秒前
共享精神应助熊儒恒采纳,获得10
9秒前
鸡冠要掉了完成签到,获得积分10
9秒前
10秒前
Ezio_sunhao发布了新的文献求助10
10秒前
Charley发布了新的文献求助10
10秒前
i7发布了新的文献求助10
10秒前
CodeCraft应助杜梦婷采纳,获得10
11秒前
11秒前
开心的凝云完成签到 ,获得积分10
11秒前
11秒前
11秒前
CC完成签到 ,获得积分10
11秒前
Orange应助靓丽代柔采纳,获得10
11秒前
12秒前
结实乐曲完成签到,获得积分10
12秒前
歪比八卜发布了新的文献求助10
13秒前
13秒前
跳跳糖发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助10
14秒前
14秒前
LYJ完成签到,获得积分10
14秒前
14秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5131542
求助须知:如何正确求助?哪些是违规求助? 4333356
关于积分的说明 13500257
捐赠科研通 4170243
什么是DOI,文献DOI怎么找? 2286163
邀请新用户注册赠送积分活动 1287120
关于科研通互助平台的介绍 1228095