亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Rapid detection of Penaeus vannamei diseases via an improved LeNet

对虾 生物 渔业 生物技术 食品科学 小虾
作者
Qingping Wang,Cheng Qian,Ping Nie,Minger Ye
出处
期刊:Aquacultural Engineering [Elsevier]
卷期号:100: 102296-102296 被引量:3
标识
DOI:10.1016/j.aquaeng.2022.102296
摘要

Shrimp disease is a greatly important factor in the culture of Penaeus vannamei , the shrimp species with the highest yield in the world aquaculture industry. Hepatopancreatic necrosis disease (HPND, 37%), red body disease (RBD, 26%), and whitish muscle disease (WMD, 18%) were the most common Penaeus vannamei diseases, all of which are usually classified and identified by two kinds of detection (manual detection and germs purifying method). Most of these detections suffer from the class low accuracy, too complex, or too costly. In this study, we tackle this situation with an improved LeNet, which includes modifying model parameters and computational methods. More particularly, this study proposes a convolutional neural networks (CNN) model that is based on LeNet network framework and can reduce parameters and accelerate calculation. To offer improvements in classification and identification, we increase the number of feature maps. Meanwhile, to firstly take denoise and then strengthen characteristic in pretreatment, HSV color space conversion and Gaussian noise with a level of 20 are led into. We conclude that the model generates the precision at about 96.1 percent when the weight parameter learning rate is 0.002 and the number of iterations is 120 after being trained and validated. The study has made tremendous progress in the rapid detection of Penaeus vannamei diseases by providing an effective technological path and suggesting the possibility of realizing early disease warnings in future works.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助方hh采纳,获得10
30秒前
金钰贝儿应助Shirley采纳,获得10
38秒前
bukeshuo发布了新的文献求助10
49秒前
49秒前
jiangchuansm完成签到,获得积分10
49秒前
闪闪妍发布了新的文献求助10
51秒前
共享精神应助闪闪妍采纳,获得10
1分钟前
1分钟前
方hh发布了新的文献求助10
1分钟前
1分钟前
1分钟前
D.Heng应助否认冶游史采纳,获得10
1分钟前
哇呀呀完成签到 ,获得积分10
1分钟前
celine123发布了新的文献求助10
2分钟前
2分钟前
mini的yr完成签到 ,获得积分10
2分钟前
酷波er应助否认冶游史采纳,获得10
2分钟前
天天快乐应助bukeshuo采纳,获得10
2分钟前
2分钟前
Doyle发布了新的文献求助10
2分钟前
DrCuiTianjin完成签到 ,获得积分10
2分钟前
小蘑菇应助Doyle采纳,获得10
3分钟前
一杯茶应助Parallel1123采纳,获得10
3分钟前
3分钟前
zhaozhao完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
bkagyin应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助小小学神采纳,获得10
4分钟前
4分钟前
4分钟前
小小学神发布了新的文献求助10
4分钟前
4分钟前
4分钟前
随机子应助chong0919采纳,获得10
4分钟前
yy完成签到 ,获得积分10
4分钟前
4分钟前
天天快乐应助朱一龙采纳,获得10
4分钟前
4分钟前
高分求助中
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Актуализированная стратиграфическая схема триасовых отложений Прикаспийского региона. Объяснительная записка 360
Project Studies: A Late Modern University Reform? 300
2024 Medicinal Chemistry Reviews 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3167162
求助须知:如何正确求助?哪些是违规求助? 2818660
关于积分的说明 7921821
捐赠科研通 2478347
什么是DOI,文献DOI怎么找? 1320282
科研通“疑难数据库(出版商)”最低求助积分说明 632748
版权声明 602438