Characterization of Bacteria Inducing Chronic Sinusitis Using Surface-Enhanced Raman Spectroscopy (SERS) with Multivariate Data Analysis

细菌 慢性鼻窦炎 鼻窦炎 化学 微生物学 粪肠球菌 主成分分析 偏最小二乘回归 金黄色葡萄球菌 生物 免疫学 数学 计算机科学 遗传学 统计 人工智能
作者
Rana Zaki Abdul Bari,Haq Nawaz,Muhammad Irfan Majeed,Nosheen Rashid,Muhammad Tahir,Hafiz Mahmood ul Hasan,Sheeba Ishtiaq,Nimra Sadaf,Ali Raza,Anam Zulfiqar,Azizur Rehman,Muhammad Shahid
出处
期刊:Analytical Letters [Informa]
卷期号:56 (8): 1351-1365 被引量:6
标识
DOI:10.1080/00032719.2022.2130349
摘要

Sinusitis is the inflammation of the mucous membrane lining the paranasal sinuses, and if symptoms and signs of sinusitis last for more than 12 weeks, it is categorized to be chronic. In this work, the characterization of cell mass/pellets of three bacterial strains, Klebsiella pneumoniae, Enterococcus faecalis, and Staphylococcus aureus, which cause chronic sinusitis, was performed by surface-enhanced Raman Spectroscopy (SERS). These bacteria that induce chronic sinusitis were cultured and isolated from the nasal swab of a patient and identified by the 16S rRNA sequences performed on isolated strains. The bacteria were characterized by their SERS characteristics, showing the potential of this method. SERS features at 594, 822, 831, 944, 1030, 1170, and 1268 cm−1 were the differentiating features of these bacteria. Moreover, multivariate data analysis was performed by principal component analysis (PCA) and partial least squares—discriminate analysis (PLS-DA) and shown to be suitable for the differentiation and classification of these bacteria. The spectral features were characterized by PCA for classification. PLS-DA was applied for further validation of differentiation which provides accuracy and sensitivity above 90% in all of the models. The area under curve (AUC) was near 1 for all PLS-DA models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助sync采纳,获得10
1秒前
1秒前
苏源智完成签到,获得积分10
2秒前
北大荒发布了新的文献求助10
3秒前
lth发布了新的文献求助10
3秒前
wangqiuyun发布了新的文献求助10
4秒前
xyg发布了新的文献求助10
4秒前
5秒前
5秒前
含糊的文涛完成签到,获得积分20
5秒前
6秒前
北大荒发布了新的文献求助10
6秒前
7秒前
7秒前
18183389686完成签到,获得积分10
7秒前
8秒前
秋雨发布了新的文献求助10
8秒前
8秒前
周全敏发布了新的文献求助20
8秒前
萄哥布鸽发布了新的文献求助10
10秒前
JosephCobb发布了新的文献求助10
10秒前
18183389686发布了新的文献求助10
11秒前
11秒前
多巴不胺发布了新的文献求助10
11秒前
852应助爱笑以松采纳,获得10
11秒前
Patrick发布了新的文献求助10
12秒前
我真找不到应助影1采纳,获得50
12秒前
赘婿应助鳗鱼山河采纳,获得10
13秒前
13秒前
SciGPT应助旋光活性采纳,获得10
13秒前
量子星尘发布了新的文献求助10
14秒前
量子星尘发布了新的文献求助10
14秒前
聪慧冰淇淋完成签到 ,获得积分10
14秒前
15秒前
15秒前
英俊的铭应助TTRRCEB采纳,获得10
15秒前
16秒前
xyg发布了新的文献求助10
16秒前
CipherSage应助木子采纳,获得10
16秒前
声声发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5663524
求助须知:如何正确求助?哪些是违规求助? 4850541
关于积分的说明 15104701
捐赠科研通 4821750
什么是DOI,文献DOI怎么找? 2580972
邀请新用户注册赠送积分活动 1535170
关于科研通互助平台的介绍 1493501