氮化硼
膜
离子
化学物理
DLVO理论
材料科学
电荷密度
静电学
离子键合
表面电荷
纳米技术
化学工程
化学
物理化学
有机化学
生物化学
物理
胶体
量子力学
工程类
作者
Aaditya Pendse,Semih Cetindag,Kun Wang,Donglin Li,Richard Castellano,Dachi Yang,Tongshuai Wang,Jerry W. Shan,Sang Il Kim
标识
DOI:10.1016/j.mattod.2022.09.006
摘要
Debate regarding the transport mechanisms of water and ions in highly charged one-dimensional (1D) nanochannel continues because of a lack of available experimental data. Here, we present a nanofluidic platform consisting of ≈2.7-nm-diameter boron nitride nanotubes (BNNTs) as a model system, and report the experimental ion transport in these sub-3-nm BNNTs. We elucidate that strong electrostatic interactions between the highly charged tube walls and ions, stemming from the high surface-charge density (378 mC/m2) of BNNTs, play important roles in defining the ion transport mechanism in BNNT pores. Experimental analysis of ion transports supported by numerical the Donnan steric pore model with dielectric exclusion (DSPM-DE) and Derjaguin–Landau–Verwey–Overbeek (DLVO) model elucidate the relationship of the ionic charge density and surface-charge density of the BNNT wall to electrostatic interaction, steric, and dielectric effects. We also demonstrate that BNNTs exhibit higher NaCl separation (≈90%) than commercial reverse-osmosis (≈80%) and nanofiltration (≈60%) membranes under the same experimental conditions, despite having a larger pore size. Our results establish design criteria for developing highly efficient ion-selective membranes for various practical applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI