计算机科学
粒度
任务(项目管理)
判决
编码器
安全性令牌
词(群论)
人工智能
自然语言处理
因果关系(物理学)
基质(化学分析)
数学
量子力学
操作系统
几何学
物理
复合材料
经济
管理
材料科学
计算机安全
作者
Cheng Yang,Zhongwei Zhang,Jie Ding,Wenjun Zheng,Zhiwen Jing,Ying Li
标识
DOI:10.1145/3511808.3557595
摘要
The task of Emotion-Cause Pair Extraction (ECPE) aims at extracting the clause pairs with the corresponding causality from the text.Existing approaches emphasize their multi-task settings. We argue that the clause-level encoders are ill-suited to the ECPE task where text information has many granularity features. In this paper, we design a Matrix Capsule-based multi-granularity framework (MaCa) for this task. Specifically, we first introduce a word-level encoder to obtain the token-aware representations. Then, two sentence-level extractors are used to generate emotion prediction and cause prediction. Finally, to obtain more fine-grained features of clause pairs, the matrix capsule is introduced, which can cluster the relationship of each clause pair. The empirical results on the widely used ECPE dataset show that our framework significantly outperforms most current methodsin the Emotion-Cause Extraction (ECE) and the challenging ECPE task.
科研通智能强力驱动
Strongly Powered by AbleSci AI