Asymmetrical Context-aware Modulation for Collaborative Filtering Recommendation

计算机科学 协同过滤 推荐系统 背景(考古学) 情报检索 人机交互 用户建模 人工智能 图形 机器学习 用户界面 理论计算机科学 古生物学 生物 操作系统
作者
Yi Ouyang,Peng Wu,Pan Li
标识
DOI:10.1145/3511808.3557240
摘要

Modern learnable collaborative filtering recommendation models generate user and item representations by deep learning methods (e.g. graph neural networks) for modeling user-item interactions. However, most of them may still have unsatisfied performances due to two issues. Firstly, some models assume that the representations of users or items are fixed when modeling interactions with different objects. However, a user may have different interests in different items, and an item may also have different attractions to different users. Thus the representations of users and items should depend on their contexts to some extent. Secondly, existing models learn representations for user and item by symmetrical dual methods which have identical or similar operations. Symmetrical methods may fail to sufficiently and reasonably extract the features of user and item as their interaction data have diverse semantic properties. To address the above issues, a novel model called Asymmetrical context-awaRe modulation for collaBorative filtering REcommendation (ARBRE) is proposed. It adopts simplified GNNs on collaborative graphs to capture homogeneous user preferences and item attributes, then designs two asymmetrical context-aware modulation models to learn dynamic user interests and item attractions, respectively. The learned representations from user domain and item domain are input pair-wisely into 4 Multi-Layer Perceptrons in different combinations to model user-item interactions. Experimental results on three real-world datasets demonstrate the superiority of ARBRE over various state-of-the-arts.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助June采纳,获得10
1秒前
liusha发布了新的文献求助10
2秒前
Hello应助mira采纳,获得10
4秒前
5秒前
科研通AI6应助小易采纳,获得10
6秒前
lxt完成签到,获得积分10
8秒前
10秒前
10秒前
怜然关注了科研通微信公众号
12秒前
情怀应助李杰采纳,获得10
14秒前
所所应助天天开心采纳,获得10
14秒前
初一发布了新的文献求助10
14秒前
赘婿应助万松辉采纳,获得10
14秒前
15秒前
ysws完成签到,获得积分10
16秒前
Orange应助乐观的颦采纳,获得10
16秒前
完美世界应助June采纳,获得10
18秒前
19秒前
19秒前
闪闪完成签到,获得积分10
21秒前
21秒前
小马甲应助科研通管家采纳,获得10
21秒前
21秒前
所所应助科研通管家采纳,获得10
22秒前
浮游应助科研通管家采纳,获得10
22秒前
浮游应助科研通管家采纳,获得20
22秒前
22秒前
传奇3应助科研通管家采纳,获得10
22秒前
无花果应助科研通管家采纳,获得10
22秒前
科目三应助科研通管家采纳,获得10
22秒前
小二郎应助科研通管家采纳,获得10
22秒前
22秒前
爆米花应助科研通管家采纳,获得10
22秒前
斯文败类应助科研通管家采纳,获得10
22秒前
慎默应助科研通管家采纳,获得10
23秒前
23秒前
23秒前
24秒前
冷酷夏真完成签到 ,获得积分10
26秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5536873
求助须知:如何正确求助?哪些是违规求助? 4624540
关于积分的说明 14592255
捐赠科研通 4564957
什么是DOI,文献DOI怎么找? 2502101
邀请新用户注册赠送积分活动 1480843
关于科研通互助平台的介绍 1452073