Asymmetrical Context-aware Modulation for Collaborative Filtering Recommendation

计算机科学 协同过滤 推荐系统 背景(考古学) 情报检索 人机交互 用户建模 人工智能 图形 机器学习 用户界面 理论计算机科学 生物 操作系统 古生物学
作者
Yi Ouyang,Peng Wu,Pan Li
标识
DOI:10.1145/3511808.3557240
摘要

Modern learnable collaborative filtering recommendation models generate user and item representations by deep learning methods (e.g. graph neural networks) for modeling user-item interactions. However, most of them may still have unsatisfied performances due to two issues. Firstly, some models assume that the representations of users or items are fixed when modeling interactions with different objects. However, a user may have different interests in different items, and an item may also have different attractions to different users. Thus the representations of users and items should depend on their contexts to some extent. Secondly, existing models learn representations for user and item by symmetrical dual methods which have identical or similar operations. Symmetrical methods may fail to sufficiently and reasonably extract the features of user and item as their interaction data have diverse semantic properties. To address the above issues, a novel model called Asymmetrical context-awaRe modulation for collaBorative filtering REcommendation (ARBRE) is proposed. It adopts simplified GNNs on collaborative graphs to capture homogeneous user preferences and item attributes, then designs two asymmetrical context-aware modulation models to learn dynamic user interests and item attractions, respectively. The learned representations from user domain and item domain are input pair-wisely into 4 Multi-Layer Perceptrons in different combinations to model user-item interactions. Experimental results on three real-world datasets demonstrate the superiority of ARBRE over various state-of-the-arts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
溜溜发布了新的文献求助10
刚刚
1秒前
wanli445完成签到,获得积分10
2秒前
科研通AI2S应助satchzhao采纳,获得10
2秒前
是小程啊完成签到 ,获得积分10
2秒前
琪琪扬扬完成签到,获得积分10
3秒前
11111完成签到,获得积分10
3秒前
4秒前
4秒前
5秒前
5秒前
fatal完成签到,获得积分10
6秒前
过分动真发布了新的文献求助20
6秒前
高贵的夜南完成签到,获得积分10
6秒前
火星上的菲鹰给冰激凌UP的求助进行了留言
6秒前
7秒前
尺素寸心发布了新的文献求助10
8秒前
orixero应助BOSLobster采纳,获得10
9秒前
orixero应助yatou5651采纳,获得10
10秒前
在水一方应助卡卡采纳,获得10
10秒前
追寻羿完成签到 ,获得积分10
11秒前
hhzz发布了新的文献求助10
11秒前
13秒前
13秒前
14秒前
14秒前
科研通AI2S应助好玩和有趣采纳,获得10
14秒前
美丽跳跳糖完成签到,获得积分20
14秒前
14秒前
丘比特应助llll采纳,获得10
15秒前
15秒前
迟大猫应助su采纳,获得10
15秒前
发嗲的戎完成签到 ,获得积分10
16秒前
16秒前
内向凌兰完成签到,获得积分10
16秒前
16秒前
zhappy完成签到,获得积分10
17秒前
satchzhao发布了新的文献求助10
17秒前
友好的妍完成签到 ,获得积分10
18秒前
香山叶正红完成签到 ,获得积分10
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808