Asymmetrical Context-aware Modulation for Collaborative Filtering Recommendation

计算机科学 协同过滤 推荐系统 背景(考古学) 情报检索 人机交互 用户建模 人工智能 图形 机器学习 用户界面 理论计算机科学 古生物学 生物 操作系统
作者
Yi Ouyang,Peng Wu,Pan Li
标识
DOI:10.1145/3511808.3557240
摘要

Modern learnable collaborative filtering recommendation models generate user and item representations by deep learning methods (e.g. graph neural networks) for modeling user-item interactions. However, most of them may still have unsatisfied performances due to two issues. Firstly, some models assume that the representations of users or items are fixed when modeling interactions with different objects. However, a user may have different interests in different items, and an item may also have different attractions to different users. Thus the representations of users and items should depend on their contexts to some extent. Secondly, existing models learn representations for user and item by symmetrical dual methods which have identical or similar operations. Symmetrical methods may fail to sufficiently and reasonably extract the features of user and item as their interaction data have diverse semantic properties. To address the above issues, a novel model called Asymmetrical context-awaRe modulation for collaBorative filtering REcommendation (ARBRE) is proposed. It adopts simplified GNNs on collaborative graphs to capture homogeneous user preferences and item attributes, then designs two asymmetrical context-aware modulation models to learn dynamic user interests and item attractions, respectively. The learned representations from user domain and item domain are input pair-wisely into 4 Multi-Layer Perceptrons in different combinations to model user-item interactions. Experimental results on three real-world datasets demonstrate the superiority of ARBRE over various state-of-the-arts.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hhh完成签到 ,获得积分10
1秒前
1秒前
1秒前
2秒前
2秒前
贪玩的又莲完成签到 ,获得积分10
2秒前
2秒前
科研菜狗完成签到,获得积分10
3秒前
3秒前
jayjayh发布了新的文献求助10
3秒前
大个应助可爱绮采纳,获得10
3秒前
Nariy完成签到,获得积分10
4秒前
cheryjay发布了新的文献求助10
5秒前
6秒前
窦鞅发布了新的文献求助10
6秒前
yin发布了新的文献求助20
6秒前
我是老大应助lessismore采纳,获得10
6秒前
柏小霜发布了新的文献求助10
7秒前
7秒前
7秒前
幽默白秋关注了科研通微信公众号
7秒前
杨胜菲发布了新的文献求助10
7秒前
8秒前
爆米花应助刘洋采纳,获得10
8秒前
8秒前
lqy完成签到 ,获得积分10
8秒前
yangsi完成签到 ,获得积分10
8秒前
汽水完成签到,获得积分10
9秒前
李嘉莹发布了新的文献求助10
10秒前
科研通AI6应助Mort采纳,获得10
10秒前
FashionBoy应助CC采纳,获得10
10秒前
rongyiming发布了新的文献求助10
11秒前
12秒前
13秒前
英姑应助汽水采纳,获得10
13秒前
14秒前
科目三应助萝萝山大王采纳,获得30
14秒前
藤与蔓完成签到,获得积分10
14秒前
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5571591
求助须知:如何正确求助?哪些是违规求助? 4656832
关于积分的说明 14718078
捐赠科研通 4597681
什么是DOI,文献DOI怎么找? 2523318
邀请新用户注册赠送积分活动 1494146
关于科研通互助平台的介绍 1464292