Asymmetrical Context-aware Modulation for Collaborative Filtering Recommendation

计算机科学 协同过滤 推荐系统 背景(考古学) 情报检索 人机交互 用户建模 人工智能 图形 机器学习 用户界面 理论计算机科学 古生物学 生物 操作系统
作者
Yi Ouyang,Peng Wu,Pan Li
标识
DOI:10.1145/3511808.3557240
摘要

Modern learnable collaborative filtering recommendation models generate user and item representations by deep learning methods (e.g. graph neural networks) for modeling user-item interactions. However, most of them may still have unsatisfied performances due to two issues. Firstly, some models assume that the representations of users or items are fixed when modeling interactions with different objects. However, a user may have different interests in different items, and an item may also have different attractions to different users. Thus the representations of users and items should depend on their contexts to some extent. Secondly, existing models learn representations for user and item by symmetrical dual methods which have identical or similar operations. Symmetrical methods may fail to sufficiently and reasonably extract the features of user and item as their interaction data have diverse semantic properties. To address the above issues, a novel model called Asymmetrical context-awaRe modulation for collaBorative filtering REcommendation (ARBRE) is proposed. It adopts simplified GNNs on collaborative graphs to capture homogeneous user preferences and item attributes, then designs two asymmetrical context-aware modulation models to learn dynamic user interests and item attractions, respectively. The learned representations from user domain and item domain are input pair-wisely into 4 Multi-Layer Perceptrons in different combinations to model user-item interactions. Experimental results on three real-world datasets demonstrate the superiority of ARBRE over various state-of-the-arts.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烟花应助一半可采纳,获得10
1秒前
1秒前
洋地黄完成签到,获得积分10
1秒前
古猫宁发布了新的文献求助10
1秒前
哎呀呀呀发布了新的文献求助30
1秒前
慕容飞凤完成签到,获得积分10
2秒前
2秒前
李梁发布了新的文献求助10
2秒前
LaiZiwen发布了新的文献求助10
2秒前
elerain完成签到 ,获得积分10
2秒前
叶远望完成签到 ,获得积分10
2秒前
小点完成签到 ,获得积分10
2秒前
Lucas应助小小采纳,获得10
2秒前
2秒前
b3lyp发布了新的文献求助10
2秒前
3秒前
3秒前
小橙子发布了新的文献求助10
4秒前
4秒前
4秒前
liuxiaomeng发布了新的文献求助10
5秒前
5秒前
不吃香菜发布了新的文献求助10
5秒前
香蕉觅云应助gooooood采纳,获得10
7秒前
科研通AI6应助小小莫采纳,获得10
7秒前
8秒前
8秒前
大模型应助微笑白薇采纳,获得30
8秒前
充电宝应助虚心的清采纳,获得10
8秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
天天开心完成签到,获得积分10
9秒前
9秒前
舒心新儿应助Bambi采纳,获得10
9秒前
9秒前
安静向珊完成签到,获得积分10
9秒前
junhuihe发布了新的文献求助10
9秒前
乐乐应助starrism采纳,获得10
9秒前
9秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5525775
求助须知:如何正确求助?哪些是违规求助? 4615867
关于积分的说明 14550800
捐赠科研通 4553950
什么是DOI,文献DOI怎么找? 2495593
邀请新用户注册赠送积分活动 1476136
关于科研通互助平台的介绍 1447836