Asymmetrical Context-aware Modulation for Collaborative Filtering Recommendation

计算机科学 协同过滤 推荐系统 背景(考古学) 情报检索 人机交互 用户建模 人工智能 图形 机器学习 用户界面 理论计算机科学 古生物学 生物 操作系统
作者
Yi Ouyang,Peng Wu,Pan Li
标识
DOI:10.1145/3511808.3557240
摘要

Modern learnable collaborative filtering recommendation models generate user and item representations by deep learning methods (e.g. graph neural networks) for modeling user-item interactions. However, most of them may still have unsatisfied performances due to two issues. Firstly, some models assume that the representations of users or items are fixed when modeling interactions with different objects. However, a user may have different interests in different items, and an item may also have different attractions to different users. Thus the representations of users and items should depend on their contexts to some extent. Secondly, existing models learn representations for user and item by symmetrical dual methods which have identical or similar operations. Symmetrical methods may fail to sufficiently and reasonably extract the features of user and item as their interaction data have diverse semantic properties. To address the above issues, a novel model called Asymmetrical context-awaRe modulation for collaBorative filtering REcommendation (ARBRE) is proposed. It adopts simplified GNNs on collaborative graphs to capture homogeneous user preferences and item attributes, then designs two asymmetrical context-aware modulation models to learn dynamic user interests and item attractions, respectively. The learned representations from user domain and item domain are input pair-wisely into 4 Multi-Layer Perceptrons in different combinations to model user-item interactions. Experimental results on three real-world datasets demonstrate the superiority of ARBRE over various state-of-the-arts.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
吴洲凤完成签到,获得积分10
刚刚
桃子发布了新的文献求助10
刚刚
爱学习的小李完成签到 ,获得积分10
1秒前
小仙完成签到,获得积分10
1秒前
xrjyjp完成签到,获得积分10
2秒前
asd发布了新的文献求助30
2秒前
liwenhao应助简单采纳,获得10
2秒前
lalala发布了新的文献求助10
3秒前
伴风望海发布了新的文献求助10
3秒前
无辜的板凳完成签到,获得积分10
3秒前
3秒前
pass完成签到,获得积分10
3秒前
展锋完成签到,获得积分10
3秒前
胆大心细一丝不苟完成签到,获得积分10
4秒前
须臾完成签到,获得积分10
4秒前
fisher完成签到 ,获得积分10
4秒前
czs发布了新的文献求助30
4秒前
4秒前
玉玉发布了新的文献求助10
5秒前
TT关闭了TT文献求助
5秒前
李爱国应助飞云采纳,获得10
5秒前
5秒前
5秒前
5秒前
5秒前
陆小果完成签到,获得积分10
6秒前
6秒前
yansong发布了新的文献求助10
6秒前
6秒前
红宝石设计局完成签到,获得积分10
7秒前
星辰大海应助康师傅采纳,获得10
7秒前
凯瑞发布了新的文献求助10
7秒前
8秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
lky发布了新的文献求助10
9秒前
FelixZhou完成签到,获得积分10
9秒前
优雅的洙发布了新的文献求助10
10秒前
10秒前
李尚洁发布了新的文献求助10
10秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5699375
求助须知:如何正确求助?哪些是违规求助? 5130580
关于积分的说明 15225579
捐赠科研通 4854309
什么是DOI,文献DOI怎么找? 2604571
邀请新用户注册赠送积分活动 1556027
关于科研通互助平台的介绍 1514304