Asymmetrical Context-aware Modulation for Collaborative Filtering Recommendation

计算机科学 协同过滤 推荐系统 背景(考古学) 情报检索 人机交互 用户建模 人工智能 图形 机器学习 用户界面 理论计算机科学 古生物学 生物 操作系统
作者
Yi Ouyang,Peng Wu,Pan Li
标识
DOI:10.1145/3511808.3557240
摘要

Modern learnable collaborative filtering recommendation models generate user and item representations by deep learning methods (e.g. graph neural networks) for modeling user-item interactions. However, most of them may still have unsatisfied performances due to two issues. Firstly, some models assume that the representations of users or items are fixed when modeling interactions with different objects. However, a user may have different interests in different items, and an item may also have different attractions to different users. Thus the representations of users and items should depend on their contexts to some extent. Secondly, existing models learn representations for user and item by symmetrical dual methods which have identical or similar operations. Symmetrical methods may fail to sufficiently and reasonably extract the features of user and item as their interaction data have diverse semantic properties. To address the above issues, a novel model called Asymmetrical context-awaRe modulation for collaBorative filtering REcommendation (ARBRE) is proposed. It adopts simplified GNNs on collaborative graphs to capture homogeneous user preferences and item attributes, then designs two asymmetrical context-aware modulation models to learn dynamic user interests and item attractions, respectively. The learned representations from user domain and item domain are input pair-wisely into 4 Multi-Layer Perceptrons in different combinations to model user-item interactions. Experimental results on three real-world datasets demonstrate the superiority of ARBRE over various state-of-the-arts.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助十一采纳,获得30
刚刚
1秒前
单复天发布了新的文献求助10
1秒前
晚星完成签到 ,获得积分10
2秒前
2秒前
Hello应助jackycas采纳,获得10
2秒前
2秒前
Akim应助中中中采纳,获得10
2秒前
3秒前
ZeKwi发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
4秒前
Lsy完成签到,获得积分10
4秒前
4秒前
4秒前
5秒前
Rosie应助无语采纳,获得10
5秒前
旅人发布了新的文献求助10
5秒前
帅气善斓发布了新的文献求助20
5秒前
刘一安发布了新的文献求助10
6秒前
可爱沛蓝完成签到 ,获得积分10
7秒前
SMU小刘~发布了新的文献求助10
7秒前
7秒前
smileLn发布了新的文献求助10
8秒前
8秒前
小魔王完成签到,获得积分10
8秒前
lbx发布了新的文献求助20
8秒前
9秒前
芳菲依旧应助Mic采纳,获得50
9秒前
标致白卉完成签到,获得积分20
9秒前
CipherSage应助开朗发夹采纳,获得10
9秒前
www发布了新的文献求助10
9秒前
Mic应助丁丁丁采纳,获得10
9秒前
在水一方应助liang采纳,获得10
9秒前
啦啦啦发布了新的文献求助30
10秒前
10秒前
麻师长完成签到,获得积分10
10秒前
amoresk发布了新的文献求助10
10秒前
所所应助SMU小刘~采纳,获得10
11秒前
htzyc发布了新的文献求助10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5647168
求助须知:如何正确求助?哪些是违规求助? 4773018
关于积分的说明 15038081
捐赠科研通 4805852
什么是DOI,文献DOI怎么找? 2570007
邀请新用户注册赠送积分活动 1526881
关于科研通互助平台的介绍 1485983