Asymmetrical Context-aware Modulation for Collaborative Filtering Recommendation

计算机科学 协同过滤 推荐系统 背景(考古学) 情报检索 人机交互 用户建模 人工智能 图形 机器学习 用户界面 理论计算机科学 古生物学 生物 操作系统
作者
Yi Ouyang,Peng Wu,Pan Li
标识
DOI:10.1145/3511808.3557240
摘要

Modern learnable collaborative filtering recommendation models generate user and item representations by deep learning methods (e.g. graph neural networks) for modeling user-item interactions. However, most of them may still have unsatisfied performances due to two issues. Firstly, some models assume that the representations of users or items are fixed when modeling interactions with different objects. However, a user may have different interests in different items, and an item may also have different attractions to different users. Thus the representations of users and items should depend on their contexts to some extent. Secondly, existing models learn representations for user and item by symmetrical dual methods which have identical or similar operations. Symmetrical methods may fail to sufficiently and reasonably extract the features of user and item as their interaction data have diverse semantic properties. To address the above issues, a novel model called Asymmetrical context-awaRe modulation for collaBorative filtering REcommendation (ARBRE) is proposed. It adopts simplified GNNs on collaborative graphs to capture homogeneous user preferences and item attributes, then designs two asymmetrical context-aware modulation models to learn dynamic user interests and item attractions, respectively. The learned representations from user domain and item domain are input pair-wisely into 4 Multi-Layer Perceptrons in different combinations to model user-item interactions. Experimental results on three real-world datasets demonstrate the superiority of ARBRE over various state-of-the-arts.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhao完成签到,获得积分10
1秒前
zz发布了新的文献求助10
2秒前
2秒前
zachary发布了新的社区帖子
3秒前
归尘发布了新的文献求助10
5秒前
刘玉凡发布了新的文献求助10
5秒前
5秒前
脑洞疼应助书文混四方采纳,获得10
8秒前
8秒前
妮妮完成签到,获得积分10
10秒前
10秒前
蒋蒋关注了科研通微信公众号
10秒前
快乐乐松发布了新的文献求助10
12秒前
慕青应助啥也不会采纳,获得10
15秒前
充电宝应助zwj采纳,获得10
15秒前
Lzt发布了新的文献求助10
17秒前
20秒前
21秒前
rtchou完成签到,获得积分10
21秒前
23秒前
共享精神应助周凡淇采纳,获得30
25秒前
Lucas应助周凡淇采纳,获得30
25秒前
pluto应助周凡淇采纳,获得10
26秒前
烟花应助周凡淇采纳,获得10
26秒前
大模型应助周凡淇采纳,获得10
26秒前
英姑应助周凡淇采纳,获得10
26秒前
万能图书馆应助周凡淇采纳,获得10
26秒前
顾矜应助周凡淇采纳,获得10
26秒前
顾矜应助周凡淇采纳,获得10
26秒前
英俊的铭应助周凡淇采纳,获得10
26秒前
和谐青柏应助wangye采纳,获得10
26秒前
我哪知道怎么关注了科研通微信公众号
26秒前
27秒前
刘玉凡完成签到,获得积分20
27秒前
奥特曼吃不胖完成签到,获得积分10
28秒前
啥也不会发布了新的文献求助10
28秒前
29秒前
29秒前
30秒前
归尘发布了新的文献求助10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
ACOG Practice Bulletin: Polycystic Ovary Syndrome 500
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5602782
求助须知:如何正确求助?哪些是违规求助? 4687903
关于积分的说明 14851726
捐赠科研通 4685582
什么是DOI,文献DOI怎么找? 2540158
邀请新用户注册赠送积分活动 1506835
关于科研通互助平台的介绍 1471450