已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Asymmetrical Context-aware Modulation for Collaborative Filtering Recommendation

计算机科学 协同过滤 推荐系统 背景(考古学) 情报检索 人机交互 用户建模 人工智能 图形 机器学习 用户界面 理论计算机科学 古生物学 生物 操作系统
作者
Yi Ouyang,Peng Wu,Pan Li
标识
DOI:10.1145/3511808.3557240
摘要

Modern learnable collaborative filtering recommendation models generate user and item representations by deep learning methods (e.g. graph neural networks) for modeling user-item interactions. However, most of them may still have unsatisfied performances due to two issues. Firstly, some models assume that the representations of users or items are fixed when modeling interactions with different objects. However, a user may have different interests in different items, and an item may also have different attractions to different users. Thus the representations of users and items should depend on their contexts to some extent. Secondly, existing models learn representations for user and item by symmetrical dual methods which have identical or similar operations. Symmetrical methods may fail to sufficiently and reasonably extract the features of user and item as their interaction data have diverse semantic properties. To address the above issues, a novel model called Asymmetrical context-awaRe modulation for collaBorative filtering REcommendation (ARBRE) is proposed. It adopts simplified GNNs on collaborative graphs to capture homogeneous user preferences and item attributes, then designs two asymmetrical context-aware modulation models to learn dynamic user interests and item attractions, respectively. The learned representations from user domain and item domain are input pair-wisely into 4 Multi-Layer Perceptrons in different combinations to model user-item interactions. Experimental results on three real-world datasets demonstrate the superiority of ARBRE over various state-of-the-arts.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
李爱国应助jackie采纳,获得10
1秒前
55155255发布了新的文献求助20
2秒前
xx发布了新的文献求助10
3秒前
Criminology34举报从南到北求助涉嫌违规
3秒前
老孟完成签到,获得积分10
4秒前
jackie完成签到,获得积分20
7秒前
冬柳发布了新的文献求助10
7秒前
好久不见发布了新的文献求助10
7秒前
9秒前
热心易绿完成签到 ,获得积分10
12秒前
LYL完成签到,获得积分10
12秒前
attention应助一粒采纳,获得10
12秒前
jiu发布了新的文献求助10
13秒前
NexusExplorer应助李唐定针采纳,获得20
15秒前
天真醉波完成签到 ,获得积分10
15秒前
科研通AI6应助Bressanone采纳,获得10
17秒前
syc完成签到,获得积分20
17秒前
默默的紫山完成签到,获得积分10
18秒前
Albert应助科研通管家采纳,获得10
18秒前
科研通AI6应助科研通管家采纳,获得10
18秒前
浮游应助科研通管家采纳,获得10
18秒前
星星亮应助科研通管家采纳,获得10
18秒前
浮游应助科研通管家采纳,获得10
18秒前
JamesPei应助科研通管家采纳,获得10
18秒前
NexusExplorer应助科研通管家采纳,获得10
18秒前
浮游应助科研通管家采纳,获得10
18秒前
桐桐应助科研通管家采纳,获得10
18秒前
星星亮应助科研通管家采纳,获得10
18秒前
浮游应助科研通管家采纳,获得10
19秒前
CipherSage应助科研通管家采纳,获得10
19秒前
19秒前
19秒前
爱科研的GG完成签到 ,获得积分10
20秒前
syc发布了新的文献求助10
23秒前
23秒前
解惑大师完成签到 ,获得积分10
30秒前
31秒前
震动的平松完成签到 ,获得积分10
32秒前
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5522409
求助须知:如何正确求助?哪些是违规求助? 4613410
关于积分的说明 14538809
捐赠科研通 4551142
什么是DOI,文献DOI怎么找? 2494023
邀请新用户注册赠送积分活动 1475048
关于科研通互助平台的介绍 1446408