Asymmetrical Context-aware Modulation for Collaborative Filtering Recommendation

计算机科学 协同过滤 推荐系统 背景(考古学) 情报检索 人机交互 用户建模 人工智能 图形 机器学习 用户界面 理论计算机科学 古生物学 生物 操作系统
作者
Yi Ouyang,Peng Wu,Pan Li
标识
DOI:10.1145/3511808.3557240
摘要

Modern learnable collaborative filtering recommendation models generate user and item representations by deep learning methods (e.g. graph neural networks) for modeling user-item interactions. However, most of them may still have unsatisfied performances due to two issues. Firstly, some models assume that the representations of users or items are fixed when modeling interactions with different objects. However, a user may have different interests in different items, and an item may also have different attractions to different users. Thus the representations of users and items should depend on their contexts to some extent. Secondly, existing models learn representations for user and item by symmetrical dual methods which have identical or similar operations. Symmetrical methods may fail to sufficiently and reasonably extract the features of user and item as their interaction data have diverse semantic properties. To address the above issues, a novel model called Asymmetrical context-awaRe modulation for collaBorative filtering REcommendation (ARBRE) is proposed. It adopts simplified GNNs on collaborative graphs to capture homogeneous user preferences and item attributes, then designs two asymmetrical context-aware modulation models to learn dynamic user interests and item attractions, respectively. The learned representations from user domain and item domain are input pair-wisely into 4 Multi-Layer Perceptrons in different combinations to model user-item interactions. Experimental results on three real-world datasets demonstrate the superiority of ARBRE over various state-of-the-arts.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海应助wsd采纳,获得10
1秒前
欢呼沅完成签到,获得积分10
1秒前
闾丘道天完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
4秒前
sswbzh应助xiaoyue采纳,获得80
4秒前
量子星尘发布了新的文献求助10
4秒前
5秒前
5秒前
7秒前
chao完成签到,获得积分10
7秒前
8秒前
传奇3应助一一采纳,获得10
9秒前
gxffxf发布了新的文献求助10
9秒前
打打应助杨洋采纳,获得10
10秒前
悲伤香菇酱完成签到,获得积分10
10秒前
111发布了新的文献求助10
10秒前
11秒前
浮游应助着急的凌青采纳,获得10
12秒前
Percy发布了新的文献求助30
12秒前
哈哈哈发布了新的文献求助10
12秒前
叶赛文完成签到,获得积分10
13秒前
SYX完成签到,获得积分10
13秒前
14秒前
15秒前
15秒前
17秒前
19秒前
21秒前
lsx发布了新的文献求助10
21秒前
dili发布了新的文献求助20
21秒前
21秒前
Akim应助富贵李采纳,获得10
21秒前
慕青应助bobo采纳,获得10
22秒前
鬼豆完成签到,获得积分10
22秒前
22秒前
老姚发布了新的文献求助10
23秒前
23秒前
我要向阳而生完成签到 ,获得积分10
23秒前
111完成签到,获得积分10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5684860
求助须知:如何正确求助?哪些是违规求助? 5039294
关于积分的说明 15185532
捐赠科研通 4843973
什么是DOI,文献DOI怎么找? 2597078
邀请新用户注册赠送积分活动 1549661
关于科研通互助平台的介绍 1508145