Asymmetrical Context-aware Modulation for Collaborative Filtering Recommendation

计算机科学 协同过滤 推荐系统 背景(考古学) 情报检索 人机交互 用户建模 人工智能 图形 机器学习 用户界面 理论计算机科学 生物 操作系统 古生物学
作者
Yi Ouyang,Peng Wu,Pan Li
标识
DOI:10.1145/3511808.3557240
摘要

Modern learnable collaborative filtering recommendation models generate user and item representations by deep learning methods (e.g. graph neural networks) for modeling user-item interactions. However, most of them may still have unsatisfied performances due to two issues. Firstly, some models assume that the representations of users or items are fixed when modeling interactions with different objects. However, a user may have different interests in different items, and an item may also have different attractions to different users. Thus the representations of users and items should depend on their contexts to some extent. Secondly, existing models learn representations for user and item by symmetrical dual methods which have identical or similar operations. Symmetrical methods may fail to sufficiently and reasonably extract the features of user and item as their interaction data have diverse semantic properties. To address the above issues, a novel model called Asymmetrical context-awaRe modulation for collaBorative filtering REcommendation (ARBRE) is proposed. It adopts simplified GNNs on collaborative graphs to capture homogeneous user preferences and item attributes, then designs two asymmetrical context-aware modulation models to learn dynamic user interests and item attractions, respectively. The learned representations from user domain and item domain are input pair-wisely into 4 Multi-Layer Perceptrons in different combinations to model user-item interactions. Experimental results on three real-world datasets demonstrate the superiority of ARBRE over various state-of-the-arts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
chenmeimei2012完成签到 ,获得积分10
刚刚
1秒前
1秒前
了0完成签到 ,获得积分10
2秒前
会笑的黑猫完成签到,获得积分10
2秒前
夜半完成签到,获得积分20
2秒前
Hepatology完成签到,获得积分10
2秒前
2秒前
2秒前
哎哟很烦完成签到,获得积分10
2秒前
yar应助科研通管家采纳,获得10
3秒前
十二应助科研通管家采纳,获得10
3秒前
爆米花应助科研通管家采纳,获得10
3秒前
任老师发布了新的文献求助10
3秒前
华仔应助科研通管家采纳,获得10
3秒前
隐形曼青应助科研通管家采纳,获得10
3秒前
量子星尘发布了新的文献求助10
3秒前
yar应助科研通管家采纳,获得10
3秒前
阿瑾发布了新的文献求助10
3秒前
momo应助科研通管家采纳,获得10
3秒前
赘婿应助科研通管家采纳,获得10
3秒前
坦率耳机应助科研通管家采纳,获得10
3秒前
慕青应助科研通管家采纳,获得10
4秒前
情怀应助科研通管家采纳,获得10
4秒前
SYLH应助科研通管家采纳,获得10
4秒前
916应助科研通管家采纳,获得10
4秒前
yar应助科研通管家采纳,获得10
4秒前
完美世界应助科研通管家采纳,获得10
4秒前
情怀应助科研通管家采纳,获得30
4秒前
田様应助科研通管家采纳,获得10
4秒前
坦率的匪应助科研通管家采纳,获得20
4秒前
收拾收拾应助科研通管家采纳,获得10
4秒前
dhts应助京墨采纳,获得10
4秒前
李健应助LLL采纳,获得10
4秒前
思源应助科研通管家采纳,获得10
4秒前
SYLH应助科研通管家采纳,获得20
5秒前
SciGPT应助科研通管家采纳,获得10
5秒前
桐桐应助科研通管家采纳,获得10
5秒前
丘比特应助科研通管家采纳,获得10
5秒前
星辰大海应助zyx采纳,获得10
5秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987223
求助须知:如何正确求助?哪些是违规求助? 3529513
关于积分的说明 11245651
捐赠科研通 3268108
什么是DOI,文献DOI怎么找? 1804027
邀请新用户注册赠送积分活动 881303
科研通“疑难数据库(出版商)”最低求助积分说明 808650