亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Asymmetrical Context-aware Modulation for Collaborative Filtering Recommendation

计算机科学 协同过滤 推荐系统 背景(考古学) 情报检索 人机交互 用户建模 人工智能 图形 机器学习 用户界面 理论计算机科学 古生物学 生物 操作系统
作者
Yi Ouyang,Peng Wu,Pan Li
标识
DOI:10.1145/3511808.3557240
摘要

Modern learnable collaborative filtering recommendation models generate user and item representations by deep learning methods (e.g. graph neural networks) for modeling user-item interactions. However, most of them may still have unsatisfied performances due to two issues. Firstly, some models assume that the representations of users or items are fixed when modeling interactions with different objects. However, a user may have different interests in different items, and an item may also have different attractions to different users. Thus the representations of users and items should depend on their contexts to some extent. Secondly, existing models learn representations for user and item by symmetrical dual methods which have identical or similar operations. Symmetrical methods may fail to sufficiently and reasonably extract the features of user and item as their interaction data have diverse semantic properties. To address the above issues, a novel model called Asymmetrical context-awaRe modulation for collaBorative filtering REcommendation (ARBRE) is proposed. It adopts simplified GNNs on collaborative graphs to capture homogeneous user preferences and item attributes, then designs two asymmetrical context-aware modulation models to learn dynamic user interests and item attractions, respectively. The learned representations from user domain and item domain are input pair-wisely into 4 Multi-Layer Perceptrons in different combinations to model user-item interactions. Experimental results on three real-world datasets demonstrate the superiority of ARBRE over various state-of-the-arts.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
oneshamok完成签到 ,获得积分10
17秒前
完美世界应助inRe采纳,获得10
58秒前
Orange应助夷则十五采纳,获得10
1分钟前
LiuHD完成签到,获得积分10
1分钟前
1分钟前
夷则十五发布了新的文献求助10
1分钟前
du发布了新的文献求助10
1分钟前
夷则十五完成签到,获得积分20
1分钟前
柚子想吃橘子完成签到,获得积分10
1分钟前
1分钟前
ZXneuro完成签到,获得积分10
1分钟前
123发布了新的文献求助10
1分钟前
阿圆发布了新的文献求助10
2分钟前
orixero应助科研通管家采纳,获得10
2分钟前
null应助科研通管家采纳,获得10
2分钟前
李爱国应助科研通管家采纳,获得10
2分钟前
null应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
null应助科研通管家采纳,获得10
2分钟前
null应助科研通管家采纳,获得10
2分钟前
2分钟前
SciGPT应助du采纳,获得10
2分钟前
crane完成签到,获得积分10
2分钟前
Upupgrowth完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
du发布了新的文献求助10
2分钟前
2分钟前
上官若男应助du采纳,获得10
3分钟前
123完成签到,获得积分10
3分钟前
华仔应助尊敬的芷卉采纳,获得10
3分钟前
咕哒猫应助尊敬的芷卉采纳,获得10
3分钟前
CipherSage应助尊敬的芷卉采纳,获得10
3分钟前
搜集达人应助尊敬的芷卉采纳,获得10
3分钟前
咕哒猫应助尊敬的芷卉采纳,获得10
3分钟前
咕哒猫应助尊敬的芷卉采纳,获得10
3分钟前
3分钟前
3分钟前
桐桐应助神医magical采纳,获得10
3分钟前
CodeCraft应助现代火车采纳,获得10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Bone Marrow Immunohistochemistry 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5628118
求助须知:如何正确求助?哪些是违规求助? 4715649
关于积分的说明 14963643
捐赠科研通 4785789
什么是DOI,文献DOI怎么找? 2555335
邀请新用户注册赠送积分活动 1516649
关于科研通互助平台的介绍 1477184