Asymmetrical Context-aware Modulation for Collaborative Filtering Recommendation

计算机科学 协同过滤 推荐系统 背景(考古学) 情报检索 人机交互 用户建模 人工智能 图形 机器学习 用户界面 理论计算机科学 古生物学 生物 操作系统
作者
Yi Ouyang,Peng Wu,Pan Li
标识
DOI:10.1145/3511808.3557240
摘要

Modern learnable collaborative filtering recommendation models generate user and item representations by deep learning methods (e.g. graph neural networks) for modeling user-item interactions. However, most of them may still have unsatisfied performances due to two issues. Firstly, some models assume that the representations of users or items are fixed when modeling interactions with different objects. However, a user may have different interests in different items, and an item may also have different attractions to different users. Thus the representations of users and items should depend on their contexts to some extent. Secondly, existing models learn representations for user and item by symmetrical dual methods which have identical or similar operations. Symmetrical methods may fail to sufficiently and reasonably extract the features of user and item as their interaction data have diverse semantic properties. To address the above issues, a novel model called Asymmetrical context-awaRe modulation for collaBorative filtering REcommendation (ARBRE) is proposed. It adopts simplified GNNs on collaborative graphs to capture homogeneous user preferences and item attributes, then designs two asymmetrical context-aware modulation models to learn dynamic user interests and item attractions, respectively. The learned representations from user domain and item domain are input pair-wisely into 4 Multi-Layer Perceptrons in different combinations to model user-item interactions. Experimental results on three real-world datasets demonstrate the superiority of ARBRE over various state-of-the-arts.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
求求科研完成签到,获得积分10
刚刚
1秒前
睡觉啦发布了新的文献求助10
1秒前
liujiahao完成签到,获得积分10
1秒前
听雪冬眠完成签到,获得积分10
1秒前
西窗同学完成签到,获得积分10
2秒前
不是省油的灯完成签到,获得积分10
2秒前
2秒前
坚果完成签到,获得积分10
2秒前
林洁佳发布了新的文献求助10
2秒前
3秒前
冷傲的山菡完成签到,获得积分10
3秒前
3秒前
顺利科研毕业完成签到,获得积分10
3秒前
4秒前
4秒前
大个应助陈曦读研版采纳,获得10
4秒前
orixero应助OrangeBlueHeart采纳,获得10
4秒前
儒雅厉完成签到,获得积分10
5秒前
白白发布了新的文献求助10
5秒前
李林鑫完成签到 ,获得积分10
5秒前
5秒前
甜蜜靖雁发布了新的文献求助10
5秒前
无极微光应助wzy采纳,获得20
5秒前
脑洞疼应助执着半凡采纳,获得10
6秒前
邢女士完成签到,获得积分10
6秒前
浮游应助丧彪采纳,获得10
6秒前
7秒前
琉璃完成签到,获得积分10
7秒前
dawn完成签到,获得积分10
7秒前
邱天发布了新的文献求助30
7秒前
领导范儿应助田泽和采纳,获得10
7秒前
8秒前
8秒前
8秒前
9秒前
睡觉啦完成签到,获得积分10
9秒前
chenhouhan发布了新的文献求助10
9秒前
yunfulu29完成签到,获得积分10
9秒前
111完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629530
求助须知:如何正确求助?哪些是违规求助? 4720219
关于积分的说明 14969927
捐赠科研通 4787582
什么是DOI,文献DOI怎么找? 2556376
邀请新用户注册赠送积分活动 1517512
关于科研通互助平台的介绍 1478188