相扑蛋白
下调和上调
小RNA
基因沉默
癌症研究
转录因子Sp1
生物
顺铂
体内
化学
分子生物学
发起人
基因表达
生物化学
化疗
遗传学
基因
泛素
作者
Guoyu Huang,Guohao Cai,Dongwei Hu,Jinjie Li,Qigang Xu,Zongjing Chen,Bo Xu
标识
DOI:10.1007/s13402-022-00722-4
摘要
ObjectiveSpecificity protein 1 (SP1), a transcription factor mediated by SUMOylation modifiers, is upregulated in gastric cancer (GC) and shares negative correlation with patient prognosis. Here, we paid main attention to the role of SP1 SUMOylation in the drug resistance of GC cells and the possible long non-coding RNA (lncRNA) SNHG17/microRNA-23b-3p (miR-23b-3p)/Notch2 network engaged in this process.MethodsTumor tissues and non-tumor tissues were isolated from GC patients who received treatment with capecitabine and cisplatin (DDP). Co-immunoprecipitation was utilized to detect the SUMOylation level of SP1. Using gain- and loss-of-function approaches, we assessed the impacts of SNHG17/miR-23b-3p/Notch2 on sensitivity of DDP-resistant GC cells in vitro and in vivo. A series of assays such as luciferase activity detection and RNA pull-down were conducted for mechanistic exploration.ResultsSP1 expression was increased due to low SP1 SUMOylation level in the recurrent GC tissues. This increase led to upregulated SNHG17 expression and SP1 binding sites existed in the SNHG17 promoter. In addition, SNHG17 could bind to miR-23b-3p while miR-23b-3p targeted Notch2. Loss of SNHG17 reduced the resistance of DDP-resistant GC cells to DDP, which was achieved through miR-23b-3p-dependent Notch2 inhibition. Finally, SP1 silencing attenuated the resistance of GC to DDP in mice.ConclusionLow SP1 SUMOylation induces SNHG17 upregulation and blocks miR-23b-3p-induced Notch2 inhibition, contributing to the resistance of GC to DDP. This study may aid in the development of therapeutic targets overcoming the chemoresistance of GC.
科研通智能强力驱动
Strongly Powered by AbleSci AI