CSTGAN: Cycle Swin Transformer GAN for Unpaired Infrared Image Colorization

人工智能 计算机科学 鉴别器 计算机视觉 变压器 卷积(计算机科学) 模式识别(心理学) 人工神经网络 电压 工程类 电信 探测器 电气工程
作者
Mingfan Zhao,Guirong Feng,Jiahai Tan,Ning Zhang,Xiaoqiang Lu
标识
DOI:10.1145/3562007.3562053
摘要

Infrared images can be captured in harsh conditions such as low light and foggy weather, which provides an effective solution for image capture throughout the day. However, the low contrast and blurred object boundaries of infrared images hinder human interpretation and the application of computer vision algorithms. Colorizing infrared images is a significant and effective method to promote infrared image understanding. Image-to-image translation methods based on generative adversarial networks are currently the main methods for colorizing infrared images. The generative adversarial network designed by Transformer overcomes the disadvantage of weak global information capture ability caused by the convolutional generative adversarial network product focusing on local features. This paper proposed a new method called Cycle Swin Transformer Generative Adversarial Networks (CSTGAN) based on Cycle-Consistent Generative Adversarial Networks. The proposed method redesigns the generator with Swin Transformer and convolution layers, and modified the discriminator and loss function. The proposed method combines the advantages of convolution and Transformer to obtain accurate mapping between infrared image domain and visible light image domain, which reduces the artifacts and distortions caused by the existing infrared image colorization methods. In addition, we collected and produced a near-infrared image colorization dataset named NIR2RGB. Extensive experimental results show that the proposed method outperforms the previous methods on the FID and KID metrics on the public datasets RGB-NIR Scene and MFNet as well as produced NIR2RGB.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Candice应助hhh采纳,获得10
3秒前
6秒前
朴素代秋发布了新的文献求助10
8秒前
10秒前
blue发布了新的文献求助10
11秒前
bonhiver完成签到 ,获得积分10
12秒前
黄卡卡完成签到,获得积分10
14秒前
15秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
打打应助科研通管家采纳,获得10
17秒前
小二郎应助科研通管家采纳,获得10
17秒前
彭于晏应助科研通管家采纳,获得10
17秒前
liuyang1991发布了新的文献求助10
17秒前
Yasing完成签到,获得积分10
18秒前
黄卡卡发布了新的文献求助30
19秒前
lll完成签到,获得积分10
22秒前
25秒前
渔舟唱晚应助liuyang1991采纳,获得10
27秒前
知犯何逆完成签到 ,获得积分10
32秒前
36秒前
37秒前
轻松代容发布了新的文献求助30
43秒前
xxiix发布了新的文献求助10
43秒前
T012完成签到,获得积分10
50秒前
xhm完成签到 ,获得积分10
51秒前
雅雅完成签到,获得积分10
53秒前
英姑应助朴素代秋采纳,获得10
56秒前
59秒前
xxiix完成签到,获得积分10
59秒前
Charley完成签到,获得积分20
59秒前
轻松代容完成签到,获得积分10
1分钟前
含糊的尔槐完成签到,获得积分10
1分钟前
1分钟前
1分钟前
Charley发布了新的文献求助10
1分钟前
朴素代秋发布了新的文献求助10
1分钟前
可爱的函函应助Charley采纳,获得10
1分钟前
lkt完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
Востребованный временем 2500
Kidney Transplantation: Principles and Practice 1000
The Restraining Hand: Captivity for Christ in China 500
Encyclopedia of Mental Health Reference Work 400
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
脑血管病 300
The Unity of the Common Law 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3372378
求助须知:如何正确求助?哪些是违规求助? 2990122
关于积分的说明 8738916
捐赠科研通 2673515
什么是DOI,文献DOI怎么找? 1464568
科研通“疑难数据库(出版商)”最低求助积分说明 677612
邀请新用户注册赠送积分活动 669000