Golden-Sine dynamic marine predator algorithm for addressing engineering design optimization

数学优化 计算机科学 人口 局部最优 进化算法 早熟收敛 工程优化 最优化问题 遗传算法 数学 社会学 人口学
作者
Muxuan Han,Zheng Du,Hua Zhu,Yancang Li,Qiuyu Yuan,Hongping Zhu
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:210: 118460-118460 被引量:13
标识
DOI:10.1016/j.eswa.2022.118460
摘要

In engineering design optimization problems, the optimal solution can improve the design quality of complex engineering system and reduce a lot of cost consumption, so it is of great practical significance to study the optimization algorithm of engineering design problems. Evolutionary computation is widely used to solve engineering design optimization problems, which are mostly mixed-integer nonlinear programming (MINLP) problems. As a newly developed evolutionary computing method, Marine Predator Algorithm (MPA) currently suffers from weak convergence and easily falls into local optimum. In order to overcome the disadvantage, this study proposed a Golden-Sine Dynamic Marine Predator Algorithm (GDMPA). Firstly, Logistic-Logistic (L-L) cascade chaos was used to adjust the initial position of the population to generate a high-quality initial prey population while ensuring ergodicity and randomness. Secondly, the dynamic adjustment transition probability strategy was added to improve the discriminant conditions when predators entered different stages, which effectively maintained the balance between global exploration and local exploitation. The adaptive inertial weight based on Sigmoid function was used in updating the step information of predators to avoid the problem of falling into local extrema. Finally, the Golden-Sine factor is employed to achieve a better balance between exploration and exploitation, further improve the premature convergence problem, enhance the population diversity, and improve the convergence rate. A series of validation studies were conducted over twelve standard test functions and the CEC2017 test set to verify the effectiveness and robustness of the improved GDMPA strategy. Mechanical optimization and size optimization study for truss structures was carried out using the proposed GDMPA, which yielded excellent results. The results of the 27-bar truss structure show that the proposed GDMPA reduces 3.24%, 27.18%, 39.38%, 27.65% and 9.67% compared to the total mass of MPA, BOA, SSA, SOA and HHO, respectively. In the other cases, the optimization results of GDMPA have been improved substantially compared with other algorithms. Therefore, GDMPA has a broad application prospect in structural design and optimization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
悦耳的水壶完成签到,获得积分10
1秒前
4秒前
科目三应助bofu采纳,获得10
4秒前
4秒前
6秒前
7秒前
上官若男应助跳跃乌冬面采纳,获得30
7秒前
弹簧豆完成签到,获得积分10
7秒前
情怀应助小张采纳,获得30
7秒前
8秒前
脑洞疼应助默默的巧蕊采纳,获得10
8秒前
孤鹜齐飞发布了新的文献求助10
8秒前
我是老大应助李元九采纳,获得10
8秒前
8秒前
郭先森3316发布了新的文献求助10
9秒前
Moon完成签到,获得积分10
9秒前
欢呼晓博完成签到,获得积分10
10秒前
13秒前
13秒前
标致怀柔完成签到,获得积分10
13秒前
盛色龙发布了新的文献求助10
13秒前
15秒前
无奈薯片完成签到,获得积分20
15秒前
FashionBoy应助bofu采纳,获得10
15秒前
particularc发布了新的文献求助10
16秒前
SciGPT应助科研通管家采纳,获得10
17秒前
华仔应助科研通管家采纳,获得10
17秒前
bkagyin应助科研通管家采纳,获得30
17秒前
元谷雪应助科研通管家采纳,获得10
17秒前
Orange应助科研通管家采纳,获得10
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
kk应助科研通管家采纳,获得10
18秒前
薰硝壤应助科研通管家采纳,获得50
18秒前
田様应助科研通管家采纳,获得10
18秒前
上官若男应助科研通管家采纳,获得10
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
kento应助科研通管家采纳,获得50
18秒前
18秒前
慕青应助科研通管家采纳,获得10
18秒前
高分求助中
The ACS Guide to Scholarly Communication 2500
Microlepidoptera Palaearctica, Volumes 1 and 3 - 13 (12-Volume Set) [German] 1122
PraxisRatgeber Mantiden., faszinierende Lauerjäger. – Buch gebraucht kaufen 700
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 700
Ожившие листья и блуждающие цветы. Практическое руководство по содержанию богомолов [Alive leaves and wandering flowers. A practical guide for keeping praying mantises] 500
Development of a new synthetic process for the synthesis of (S)-methadone and (S)- and (R)-isomethadone as NMDA receptor antagonists for the treatment of depression 500
A Dissection Guide & Atlas to the Rabbit 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3093589
求助须知:如何正确求助?哪些是违规求助? 2745564
关于积分的说明 7586157
捐赠科研通 2396871
什么是DOI,文献DOI怎么找? 1271459
科研通“疑难数据库(出版商)”最低求助积分说明 615172
版权声明 598844