Golden-Sine dynamic marine predator algorithm for addressing engineering design optimization

数学优化 计算机科学 人口 局部最优 进化算法 早熟收敛 工程优化 最优化问题 遗传算法 数学 社会学 人口学
作者
Muxuan Han,Zheng Du,Hua Zhu,Yancang Li,Qiuyu Yuan,Hongping Zhu
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:210: 118460-118460 被引量:13
标识
DOI:10.1016/j.eswa.2022.118460
摘要

In engineering design optimization problems, the optimal solution can improve the design quality of complex engineering system and reduce a lot of cost consumption, so it is of great practical significance to study the optimization algorithm of engineering design problems. Evolutionary computation is widely used to solve engineering design optimization problems, which are mostly mixed-integer nonlinear programming (MINLP) problems. As a newly developed evolutionary computing method, Marine Predator Algorithm (MPA) currently suffers from weak convergence and easily falls into local optimum. In order to overcome the disadvantage, this study proposed a Golden-Sine Dynamic Marine Predator Algorithm (GDMPA). Firstly, Logistic-Logistic (L-L) cascade chaos was used to adjust the initial position of the population to generate a high-quality initial prey population while ensuring ergodicity and randomness. Secondly, the dynamic adjustment transition probability strategy was added to improve the discriminant conditions when predators entered different stages, which effectively maintained the balance between global exploration and local exploitation. The adaptive inertial weight based on Sigmoid function was used in updating the step information of predators to avoid the problem of falling into local extrema. Finally, the Golden-Sine factor is employed to achieve a better balance between exploration and exploitation, further improve the premature convergence problem, enhance the population diversity, and improve the convergence rate. A series of validation studies were conducted over twelve standard test functions and the CEC2017 test set to verify the effectiveness and robustness of the improved GDMPA strategy. Mechanical optimization and size optimization study for truss structures was carried out using the proposed GDMPA, which yielded excellent results. The results of the 27-bar truss structure show that the proposed GDMPA reduces 3.24%, 27.18%, 39.38%, 27.65% and 9.67% compared to the total mass of MPA, BOA, SSA, SOA and HHO, respectively. In the other cases, the optimization results of GDMPA have been improved substantially compared with other algorithms. Therefore, GDMPA has a broad application prospect in structural design and optimization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
马凯东发布了新的文献求助10
1秒前
黑眼圈发布了新的文献求助10
1秒前
2秒前
共享精神应助nemo采纳,获得10
2秒前
2秒前
酷波er应助CCC采纳,获得10
3秒前
JamesPei应助福征采纳,获得10
3秒前
5秒前
万能图书馆应助尹恩惠采纳,获得10
6秒前
sume24发布了新的文献求助10
6秒前
Sal完成签到,获得积分10
6秒前
小M发布了新的文献求助10
7秒前
7秒前
7秒前
8秒前
8秒前
9秒前
科目三应助坦率的万言采纳,获得10
9秒前
妮露的修狗完成签到,获得积分10
10秒前
11秒前
噼里啪啦完成签到 ,获得积分10
11秒前
书双完成签到,获得积分10
12秒前
takumi关注了科研通微信公众号
12秒前
daisies应助lihailong采纳,获得10
12秒前
13秒前
sfsdg发布了新的文献求助10
13秒前
14秒前
YQQ完成签到,获得积分10
14秒前
labbiqq发布了新的文献求助10
14秒前
天天快乐应助sdgfv采纳,获得10
14秒前
小M完成签到,获得积分10
15秒前
满意的烨磊完成签到,获得积分10
16秒前
19秒前
书双发布了新的文献求助20
19秒前
翻羽发布了新的文献求助10
20秒前
20秒前
21秒前
21秒前
22秒前
jj发布了新的文献求助10
22秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959455
求助须知:如何正确求助?哪些是违规求助? 3505634
关于积分的说明 11125092
捐赠科研通 3237449
什么是DOI,文献DOI怎么找? 1789148
邀请新用户注册赠送积分活动 871583
科研通“疑难数据库(出版商)”最低求助积分说明 802858