清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Golden-Sine dynamic marine predator algorithm for addressing engineering design optimization

数学优化 计算机科学 人口 局部最优 进化算法 早熟收敛 工程优化 最优化问题 遗传算法 数学 社会学 人口学
作者
Muxuan Han,Zheng Du,Hua Zhu,Yancang Li,Qiuyu Yuan,Hongping Zhu
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:210: 118460-118460 被引量:13
标识
DOI:10.1016/j.eswa.2022.118460
摘要

In engineering design optimization problems, the optimal solution can improve the design quality of complex engineering system and reduce a lot of cost consumption, so it is of great practical significance to study the optimization algorithm of engineering design problems. Evolutionary computation is widely used to solve engineering design optimization problems, which are mostly mixed-integer nonlinear programming (MINLP) problems. As a newly developed evolutionary computing method, Marine Predator Algorithm (MPA) currently suffers from weak convergence and easily falls into local optimum. In order to overcome the disadvantage, this study proposed a Golden-Sine Dynamic Marine Predator Algorithm (GDMPA). Firstly, Logistic-Logistic (L-L) cascade chaos was used to adjust the initial position of the population to generate a high-quality initial prey population while ensuring ergodicity and randomness. Secondly, the dynamic adjustment transition probability strategy was added to improve the discriminant conditions when predators entered different stages, which effectively maintained the balance between global exploration and local exploitation. The adaptive inertial weight based on Sigmoid function was used in updating the step information of predators to avoid the problem of falling into local extrema. Finally, the Golden-Sine factor is employed to achieve a better balance between exploration and exploitation, further improve the premature convergence problem, enhance the population diversity, and improve the convergence rate. A series of validation studies were conducted over twelve standard test functions and the CEC2017 test set to verify the effectiveness and robustness of the improved GDMPA strategy. Mechanical optimization and size optimization study for truss structures was carried out using the proposed GDMPA, which yielded excellent results. The results of the 27-bar truss structure show that the proposed GDMPA reduces 3.24%, 27.18%, 39.38%, 27.65% and 9.67% compared to the total mass of MPA, BOA, SSA, SOA and HHO, respectively. In the other cases, the optimization results of GDMPA have been improved substantially compared with other algorithms. Therefore, GDMPA has a broad application prospect in structural design and optimization.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
arniu2008发布了新的文献求助30
2秒前
ybwei2008_163发布了新的文献求助10
2秒前
Nancy完成签到 ,获得积分10
6秒前
8秒前
芬芬完成签到 ,获得积分10
12秒前
HHM发布了新的文献求助10
13秒前
桐桐应助ybwei2008_163采纳,获得10
27秒前
arniu2008完成签到,获得积分20
28秒前
斯文败类应助ybwei2008_163采纳,获得10
39秒前
chayue完成签到 ,获得积分10
40秒前
大个应助科研通管家采纳,获得10
43秒前
alanbike完成签到,获得积分10
50秒前
1分钟前
ybwei2008_163发布了新的文献求助10
1分钟前
彦子完成签到 ,获得积分10
1分钟前
大力的远望完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
ty完成签到,获得积分10
1分钟前
ybwei2008_163发布了新的文献求助10
1分钟前
小小完成签到 ,获得积分10
1分钟前
1分钟前
善学以致用应助ybwei2008_163采纳,获得10
1分钟前
yushiolo完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
Ray完成签到 ,获得积分10
1分钟前
孙畅完成签到 ,获得积分10
2分钟前
verymiao完成签到 ,获得积分10
2分钟前
2分钟前
Leohp完成签到,获得积分10
2分钟前
xh完成签到 ,获得积分10
2分钟前
王世卉完成签到,获得积分10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
2分钟前
LuoYR@SZU完成签到,获得积分10
2分钟前
maclogos完成签到,获得积分10
2分钟前
可爱的函函应助ybwei2008_163采纳,获得10
2分钟前
伊笙完成签到 ,获得积分0
2分钟前
SONGREN发布了新的文献求助10
2分钟前
隐形曼青应助ybwei2008_163采纳,获得10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664649
求助须知:如何正确求助?哪些是违规求助? 4867349
关于积分的说明 15108282
捐赠科研通 4823315
什么是DOI,文献DOI怎么找? 2582219
邀请新用户注册赠送积分活动 1536270
关于科研通互助平台的介绍 1494666