亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Golden-Sine dynamic marine predator algorithm for addressing engineering design optimization

数学优化 计算机科学 人口 局部最优 进化算法 早熟收敛 工程优化 最优化问题 遗传算法 数学 社会学 人口学
作者
Muxuan Han,Zheng Du,Hua Zhu,Yancang Li,Qiuyu Yuan,Hongping Zhu
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:210: 118460-118460 被引量:13
标识
DOI:10.1016/j.eswa.2022.118460
摘要

In engineering design optimization problems, the optimal solution can improve the design quality of complex engineering system and reduce a lot of cost consumption, so it is of great practical significance to study the optimization algorithm of engineering design problems. Evolutionary computation is widely used to solve engineering design optimization problems, which are mostly mixed-integer nonlinear programming (MINLP) problems. As a newly developed evolutionary computing method, Marine Predator Algorithm (MPA) currently suffers from weak convergence and easily falls into local optimum. In order to overcome the disadvantage, this study proposed a Golden-Sine Dynamic Marine Predator Algorithm (GDMPA). Firstly, Logistic-Logistic (L-L) cascade chaos was used to adjust the initial position of the population to generate a high-quality initial prey population while ensuring ergodicity and randomness. Secondly, the dynamic adjustment transition probability strategy was added to improve the discriminant conditions when predators entered different stages, which effectively maintained the balance between global exploration and local exploitation. The adaptive inertial weight based on Sigmoid function was used in updating the step information of predators to avoid the problem of falling into local extrema. Finally, the Golden-Sine factor is employed to achieve a better balance between exploration and exploitation, further improve the premature convergence problem, enhance the population diversity, and improve the convergence rate. A series of validation studies were conducted over twelve standard test functions and the CEC2017 test set to verify the effectiveness and robustness of the improved GDMPA strategy. Mechanical optimization and size optimization study for truss structures was carried out using the proposed GDMPA, which yielded excellent results. The results of the 27-bar truss structure show that the proposed GDMPA reduces 3.24%, 27.18%, 39.38%, 27.65% and 9.67% compared to the total mass of MPA, BOA, SSA, SOA and HHO, respectively. In the other cases, the optimization results of GDMPA have been improved substantially compared with other algorithms. Therefore, GDMPA has a broad application prospect in structural design and optimization.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
9秒前
orixero应助科研通管家采纳,获得10
10秒前
CodeCraft应助学术悍匪采纳,获得10
33秒前
41秒前
学术悍匪完成签到,获得积分10
43秒前
学术悍匪发布了新的文献求助10
46秒前
48秒前
优美香露发布了新的文献求助80
52秒前
52秒前
酷炫翠柏发布了新的文献求助10
56秒前
万能图书馆应助tuyfytjt采纳,获得10
1分钟前
小丸子和zz完成签到 ,获得积分10
1分钟前
1分钟前
asd1576562308完成签到 ,获得积分10
1分钟前
tuyfytjt发布了新的文献求助10
1分钟前
yhw完成签到,获得积分10
1分钟前
meow完成签到 ,获得积分10
1分钟前
科研通AI2S应助酷炫翠柏采纳,获得30
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
梵莫完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
一二发布了新的文献求助10
1分钟前
无极微光应助Dyying采纳,获得20
2分钟前
XueXiTong完成签到,获得积分10
2分钟前
大刘发布了新的文献求助10
2分钟前
Bin_Liu发布了新的文献求助10
2分钟前
2分钟前
Orange应助凡华采纳,获得10
2分钟前
yang发布了新的文献求助10
2分钟前
大刘完成签到,获得积分10
2分钟前
Thanks完成签到 ,获得积分10
3分钟前
3分钟前
上官若男应助欣喜的广山采纳,获得10
3分钟前
duzhi完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5657943
求助须知:如何正确求助?哪些是违规求助? 4814668
关于积分的说明 15080640
捐赠科研通 4816211
什么是DOI,文献DOI怎么找? 2577199
邀请新用户注册赠送积分活动 1532206
关于科研通互助平台的介绍 1490776