Golden-Sine dynamic marine predator algorithm for addressing engineering design optimization

数学优化 计算机科学 人口 局部最优 进化算法 早熟收敛 工程优化 最优化问题 遗传算法 数学 社会学 人口学
作者
Muxuan Han,Zheng Du,Hua Zhu,Yancang Li,Qiuyu Yuan,Hongping Zhu
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:210: 118460-118460 被引量:13
标识
DOI:10.1016/j.eswa.2022.118460
摘要

In engineering design optimization problems, the optimal solution can improve the design quality of complex engineering system and reduce a lot of cost consumption, so it is of great practical significance to study the optimization algorithm of engineering design problems. Evolutionary computation is widely used to solve engineering design optimization problems, which are mostly mixed-integer nonlinear programming (MINLP) problems. As a newly developed evolutionary computing method, Marine Predator Algorithm (MPA) currently suffers from weak convergence and easily falls into local optimum. In order to overcome the disadvantage, this study proposed a Golden-Sine Dynamic Marine Predator Algorithm (GDMPA). Firstly, Logistic-Logistic (L-L) cascade chaos was used to adjust the initial position of the population to generate a high-quality initial prey population while ensuring ergodicity and randomness. Secondly, the dynamic adjustment transition probability strategy was added to improve the discriminant conditions when predators entered different stages, which effectively maintained the balance between global exploration and local exploitation. The adaptive inertial weight based on Sigmoid function was used in updating the step information of predators to avoid the problem of falling into local extrema. Finally, the Golden-Sine factor is employed to achieve a better balance between exploration and exploitation, further improve the premature convergence problem, enhance the population diversity, and improve the convergence rate. A series of validation studies were conducted over twelve standard test functions and the CEC2017 test set to verify the effectiveness and robustness of the improved GDMPA strategy. Mechanical optimization and size optimization study for truss structures was carried out using the proposed GDMPA, which yielded excellent results. The results of the 27-bar truss structure show that the proposed GDMPA reduces 3.24%, 27.18%, 39.38%, 27.65% and 9.67% compared to the total mass of MPA, BOA, SSA, SOA and HHO, respectively. In the other cases, the optimization results of GDMPA have been improved substantially compared with other algorithms. Therefore, GDMPA has a broad application prospect in structural design and optimization.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
生动的冥幽完成签到,获得积分10
刚刚
大豪完成签到,获得积分10
刚刚
无限的千凝完成签到 ,获得积分10
1秒前
舒适涵山完成签到,获得积分10
1秒前
H2O完成签到,获得积分10
3秒前
5秒前
莹0000完成签到,获得积分10
5秒前
潇洒天抒完成签到,获得积分10
7秒前
yar完成签到 ,获得积分10
7秒前
213驳回了李健应助
7秒前
姚序东完成签到,获得积分10
7秒前
T_MC郭完成签到,获得积分10
8秒前
ssk完成签到,获得积分10
8秒前
MUWENYING完成签到,获得积分10
10秒前
打打应助科研通管家采纳,获得10
10秒前
彭于晏应助科研通管家采纳,获得10
10秒前
yj发布了新的文献求助30
10秒前
完美世界应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
科研通AI6应助科研通管家采纳,获得10
10秒前
10秒前
思源应助科研通管家采纳,获得10
10秒前
田様应助科研通管家采纳,获得10
10秒前
NexusExplorer应助科研通管家采纳,获得10
10秒前
共享精神应助科研通管家采纳,获得10
11秒前
Stella应助科研通管家采纳,获得30
11秒前
BowieHuang应助科研通管家采纳,获得10
11秒前
爆米花应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
华青ww完成签到,获得积分10
12秒前
几许星河皓月完成签到 ,获得积分10
12秒前
14秒前
梅夕阳完成签到,获得积分10
15秒前
淡淡丹妗发布了新的文献求助10
15秒前
jerry完成签到,获得积分10
16秒前
饱满一手完成签到 ,获得积分10
16秒前
务实雁梅完成签到,获得积分10
18秒前
yemao发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5600022
求助须知:如何正确求助?哪些是违规求助? 4685803
关于积分的说明 14839504
捐赠科研通 4674748
什么是DOI,文献DOI怎么找? 2538486
邀请新用户注册赠送积分活动 1505640
关于科研通互助平台的介绍 1471109