SF-YOLOv5: A Lightweight Small Object Detection Algorithm Based on Improved Feature Fusion Mode

计算机科学 联营 特征(语言学) 目标检测 人工智能 失败 棱锥(几何) 模式(计算机接口) 算法 模式识别(心理学) 光学(聚焦) 计算机视觉 数学 语言学 操作系统 光学 物理 哲学 并行计算 几何学
作者
Haiying Liu,Fengqian Sun,Jason Gu,Lixia Deng
出处
期刊:Sensors [MDPI AG]
卷期号:22 (15): 5817-5817 被引量:96
标识
DOI:10.3390/s22155817
摘要

In the research of computer vision, a very challenging problem is the detection of small objects. The existing detection algorithms often focus on detecting full-scale objects, without making proprietary optimization for detecting small-size objects. For small objects dense scenes, not only the accuracy is low, but also there is a certain waste of computing resources. An improved detection algorithm was proposed for small objects based on YOLOv5. By reasonably clipping the feature map output of the large object detection layer, the computing resources required by the model were significantly reduced and the model becomes more lightweight. An improved feature fusion method (PB-FPN) for small object detection based on PANet and BiFPN was proposed, which effectively increased the detection ability for small object of the algorithm. By introducing the spatial pyramid pooling (SPP) in the backbone network into the feature fusion network and connecting with the model prediction head, the performance of the algorithm was effectively enhanced. The experiments demonstrated that the improved algorithm has very good results in detection accuracy and real-time ability. Compared with the classical YOLOv5, the mAP@0.5 and mAP@0.5:0.95 of SF-YOLOv5 were increased by 1.6% and 0.8%, respectively, the number of parameters of the network were reduced by 68.2%, computational resources (FLOPs) were reduced by 12.7%, and the inferring time of the mode was reduced by 6.9%.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Daisy完成签到,获得积分10
刚刚
wait完成签到,获得积分10
1秒前
sijiong_han应助lixuanhao采纳,获得10
1秒前
1秒前
无极微光应助Kizuna采纳,获得20
3秒前
wanci应助小鹿采纳,获得10
3秒前
深情安青应助何以故人初采纳,获得10
3秒前
逆光完成签到 ,获得积分10
3秒前
Lucas应助醉熏的绯采纳,获得10
3秒前
FashionBoy应助科研通管家采纳,获得10
4秒前
酷波er应助科研通管家采纳,获得10
4秒前
wanci应助科研通管家采纳,获得10
4秒前
天天快乐应助科研通管家采纳,获得10
4秒前
隐形曼青应助科研通管家采纳,获得10
4秒前
SciGPT应助科研通管家采纳,获得10
4秒前
研友_rLmrgn应助科研通管家采纳,获得10
4秒前
大宝君应助科研通管家采纳,获得20
4秒前
酷波er应助科研通管家采纳,获得10
4秒前
FashionBoy应助科研通管家采纳,获得10
4秒前
情怀应助科研通管家采纳,获得10
4秒前
打打应助科研通管家采纳,获得10
4秒前
桐桐应助科研通管家采纳,获得10
4秒前
大模型应助科研通管家采纳,获得10
4秒前
ding应助科研通管家采纳,获得10
4秒前
852应助科研通管家采纳,获得30
4秒前
4秒前
大模型应助科研通管家采纳,获得10
4秒前
FF完成签到,获得积分10
4秒前
大个应助科研通管家采纳,获得10
5秒前
斯文败类应助科研通管家采纳,获得10
5秒前
大模型应助科研通管家采纳,获得10
5秒前
领导范儿应助科研通管家采纳,获得10
5秒前
葉芊羽发布了新的文献求助10
5秒前
乐观小之应助sunzhuxi采纳,获得10
7秒前
7秒前
健忘的曼青关注了科研通微信公众号
10秒前
耶耶完成签到,获得积分10
12秒前
脑洞疼应助zhogwe采纳,获得10
12秒前
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5735868
求助须知:如何正确求助?哪些是违规求助? 5363199
关于积分的说明 15331638
捐赠科研通 4879999
什么是DOI,文献DOI怎么找? 2622459
邀请新用户注册赠送积分活动 1571448
关于科研通互助平台的介绍 1528243