清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

SF-YOLOv5: A Lightweight Small Object Detection Algorithm Based on Improved Feature Fusion Mode

计算机科学 联营 特征(语言学) 目标检测 人工智能 失败 棱锥(几何) 模式(计算机接口) 算法 模式识别(心理学) 光学(聚焦) 计算机视觉 数学 语言学 操作系统 光学 物理 哲学 并行计算 几何学
作者
Haiying Liu,Fengqian Sun,Jason Gu,Lixia Deng
出处
期刊:Sensors [Multidisciplinary Digital Publishing Institute]
卷期号:22 (15): 5817-5817 被引量:96
标识
DOI:10.3390/s22155817
摘要

In the research of computer vision, a very challenging problem is the detection of small objects. The existing detection algorithms often focus on detecting full-scale objects, without making proprietary optimization for detecting small-size objects. For small objects dense scenes, not only the accuracy is low, but also there is a certain waste of computing resources. An improved detection algorithm was proposed for small objects based on YOLOv5. By reasonably clipping the feature map output of the large object detection layer, the computing resources required by the model were significantly reduced and the model becomes more lightweight. An improved feature fusion method (PB-FPN) for small object detection based on PANet and BiFPN was proposed, which effectively increased the detection ability for small object of the algorithm. By introducing the spatial pyramid pooling (SPP) in the backbone network into the feature fusion network and connecting with the model prediction head, the performance of the algorithm was effectively enhanced. The experiments demonstrated that the improved algorithm has very good results in detection accuracy and real-time ability. Compared with the classical YOLOv5, the mAP@0.5 and mAP@0.5:0.95 of SF-YOLOv5 were increased by 1.6% and 0.8%, respectively, the number of parameters of the network were reduced by 68.2%, computational resources (FLOPs) were reduced by 12.7%, and the inferring time of the mode was reduced by 6.9%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ll完成签到 ,获得积分10
3秒前
gengfu完成签到,获得积分10
8秒前
judy完成签到,获得积分10
20秒前
lu应助liaomr采纳,获得10
22秒前
FashionBoy应助1234采纳,获得10
23秒前
jerry完成签到 ,获得积分10
26秒前
龙猫爱看书完成签到,获得积分10
33秒前
38秒前
qi0625完成签到,获得积分10
42秒前
1234发布了新的文献求助10
44秒前
51秒前
股价发布了新的文献求助10
55秒前
57秒前
YangSY完成签到,获得积分10
1分钟前
1234完成签到,获得积分10
1分钟前
Vivian完成签到 ,获得积分10
1分钟前
欢呼的丁真完成签到,获得积分10
1分钟前
发个15分的完成签到 ,获得积分10
1分钟前
股价发布了新的文献求助10
1分钟前
寒冷的煜祺完成签到,获得积分10
1分钟前
1分钟前
1分钟前
小二郎应助科研通管家采纳,获得10
1分钟前
lifenghou完成签到 ,获得积分10
1分钟前
1分钟前
刻苦的新烟完成签到 ,获得积分10
1分钟前
股价发布了新的文献求助10
1分钟前
mix完成签到 ,获得积分10
1分钟前
CompJIN完成签到,获得积分10
1分钟前
可乐完成签到,获得积分10
1分钟前
momoni完成签到 ,获得积分10
2分钟前
CNYDNZB完成签到 ,获得积分10
2分钟前
股价发布了新的文献求助10
2分钟前
CYYDNDB完成签到 ,获得积分10
2分钟前
丁静完成签到 ,获得积分10
2分钟前
凡迪亚比应助股价采纳,获得30
2分钟前
Ava应助股价采纳,获得10
2分钟前
文与武完成签到 ,获得积分10
2分钟前
aowulan完成签到 ,获得积分10
2分钟前
芽衣完成签到 ,获得积分10
2分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965729
求助须知:如何正确求助?哪些是违规求助? 3510967
关于积分的说明 11155787
捐赠科研通 3245462
什么是DOI,文献DOI怎么找? 1792981
邀请新用户注册赠送积分活动 874201
科研通“疑难数据库(出版商)”最低求助积分说明 804247