SF-YOLOv5: A Lightweight Small Object Detection Algorithm Based on Improved Feature Fusion Mode

计算机科学 联营 特征(语言学) 目标检测 人工智能 失败 棱锥(几何) 模式(计算机接口) 算法 模式识别(心理学) 光学(聚焦) 计算机视觉 数学 哲学 语言学 物理 几何学 并行计算 光学 操作系统
作者
Haiying Liu,Fengqian Sun,Jason Gu,Lixia Deng
出处
期刊:Sensors [MDPI AG]
卷期号:22 (15): 5817-5817 被引量:96
标识
DOI:10.3390/s22155817
摘要

In the research of computer vision, a very challenging problem is the detection of small objects. The existing detection algorithms often focus on detecting full-scale objects, without making proprietary optimization for detecting small-size objects. For small objects dense scenes, not only the accuracy is low, but also there is a certain waste of computing resources. An improved detection algorithm was proposed for small objects based on YOLOv5. By reasonably clipping the feature map output of the large object detection layer, the computing resources required by the model were significantly reduced and the model becomes more lightweight. An improved feature fusion method (PB-FPN) for small object detection based on PANet and BiFPN was proposed, which effectively increased the detection ability for small object of the algorithm. By introducing the spatial pyramid pooling (SPP) in the backbone network into the feature fusion network and connecting with the model prediction head, the performance of the algorithm was effectively enhanced. The experiments demonstrated that the improved algorithm has very good results in detection accuracy and real-time ability. Compared with the classical YOLOv5, the mAP@0.5 and mAP@0.5:0.95 of SF-YOLOv5 were increased by 1.6% and 0.8%, respectively, the number of parameters of the network were reduced by 68.2%, computational resources (FLOPs) were reduced by 12.7%, and the inferring time of the mode was reduced by 6.9%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
风中的夏兰完成签到,获得积分10
1秒前
czt完成签到,获得积分10
1秒前
研友_nPPERn发布了新的文献求助10
1秒前
2秒前
温柔若发布了新的文献求助10
2秒前
ry发布了新的文献求助10
2秒前
gms发布了新的文献求助10
2秒前
Owen应助judy采纳,获得30
2秒前
Zifflie完成签到,获得积分10
2秒前
3秒前
3秒前
xuanxuan发布了新的文献求助10
3秒前
keigo发布了新的文献求助10
3秒前
xqwwqx发布了新的文献求助10
3秒前
fay完成签到,获得积分10
4秒前
毛儿豆儿完成签到,获得积分10
4秒前
马铃薯发布了新的文献求助10
4秒前
帅玉玉发布了新的文献求助10
4秒前
MADKAI发布了新的文献求助10
4秒前
老詹头完成签到,获得积分10
4秒前
5秒前
鲸落完成签到,获得积分10
5秒前
erfc完成签到,获得积分10
5秒前
ezreal完成签到,获得积分10
6秒前
sll发布了新的文献求助20
6秒前
Ava应助liyi采纳,获得10
6秒前
FFFFFFF应助圈圈采纳,获得10
6秒前
6秒前
JUll完成签到,获得积分10
7秒前
8秒前
aurora发布了新的文献求助10
8秒前
七七发布了新的文献求助10
8秒前
八九发布了新的文献求助50
8秒前
MeiLing完成签到,获得积分10
8秒前
Hello应助小柠檬采纳,获得10
8秒前
www发布了新的文献求助10
8秒前
老詹头发布了新的文献求助10
9秒前
心房子完成签到,获得积分10
9秒前
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678