SF-YOLOv5: A Lightweight Small Object Detection Algorithm Based on Improved Feature Fusion Mode

计算机科学 联营 特征(语言学) 目标检测 人工智能 失败 棱锥(几何) 模式(计算机接口) 算法 模式识别(心理学) 光学(聚焦) 计算机视觉 数学 语言学 操作系统 光学 物理 哲学 并行计算 几何学
作者
Haiying Liu,Fengqian Sun,Jason Gu,Lixia Deng
出处
期刊:Sensors [MDPI AG]
卷期号:22 (15): 5817-5817 被引量:96
标识
DOI:10.3390/s22155817
摘要

In the research of computer vision, a very challenging problem is the detection of small objects. The existing detection algorithms often focus on detecting full-scale objects, without making proprietary optimization for detecting small-size objects. For small objects dense scenes, not only the accuracy is low, but also there is a certain waste of computing resources. An improved detection algorithm was proposed for small objects based on YOLOv5. By reasonably clipping the feature map output of the large object detection layer, the computing resources required by the model were significantly reduced and the model becomes more lightweight. An improved feature fusion method (PB-FPN) for small object detection based on PANet and BiFPN was proposed, which effectively increased the detection ability for small object of the algorithm. By introducing the spatial pyramid pooling (SPP) in the backbone network into the feature fusion network and connecting with the model prediction head, the performance of the algorithm was effectively enhanced. The experiments demonstrated that the improved algorithm has very good results in detection accuracy and real-time ability. Compared with the classical YOLOv5, the mAP@0.5 and mAP@0.5:0.95 of SF-YOLOv5 were increased by 1.6% and 0.8%, respectively, the number of parameters of the network were reduced by 68.2%, computational resources (FLOPs) were reduced by 12.7%, and the inferring time of the mode was reduced by 6.9%.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wackykao发布了新的文献求助10
刚刚
Lucas应助VDV采纳,获得10
刚刚
靓丽安珊发布了新的文献求助10
刚刚
hjq发布了新的文献求助10
刚刚
量子星尘发布了新的文献求助10
刚刚
刚刚
fu发布了新的文献求助10
1秒前
FashionBoy应助鸵鸟采纳,获得10
1秒前
2秒前
alier完成签到,获得积分10
2秒前
快乐若翠完成签到,获得积分10
2秒前
华杰发布了新的文献求助10
2秒前
2秒前
昊儿虫完成签到 ,获得积分10
2秒前
2秒前
2秒前
教生物的杨教授给教生物的杨教授的求助进行了留言
3秒前
飞小骆驼完成签到,获得积分10
3秒前
路过地球完成签到 ,获得积分10
3秒前
阿美完成签到,获得积分10
4秒前
4秒前
4秒前
4秒前
5秒前
gs发布了新的文献求助10
5秒前
5秒前
研友_841zXL完成签到,获得积分0
5秒前
童宝完成签到,获得积分10
6秒前
天天快乐应助吃菠萝大王采纳,获得10
6秒前
酷波er应助火星上云朵采纳,获得10
6秒前
Hyh_发布了新的文献求助10
6秒前
爱库珀发布了新的文献求助10
7秒前
histhb完成签到,获得积分10
7秒前
搜集达人应助华杰采纳,获得10
7秒前
8秒前
江川直子完成签到,获得积分10
8秒前
xxl1031237415发布了新的文献求助10
9秒前
9秒前
NIHAO发布了新的文献求助10
9秒前
Parsifal发布了新的文献求助30
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5519544
求助须知:如何正确求助?哪些是违规求助? 4611607
关于积分的说明 14529535
捐赠科研通 4549077
什么是DOI,文献DOI怎么找? 2492697
邀请新用户注册赠送积分活动 1473841
关于科研通互助平台的介绍 1445668