SF-YOLOv5: A Lightweight Small Object Detection Algorithm Based on Improved Feature Fusion Mode

计算机科学 联营 特征(语言学) 目标检测 人工智能 失败 棱锥(几何) 模式(计算机接口) 算法 模式识别(心理学) 光学(聚焦) 计算机视觉 数学 语言学 操作系统 光学 物理 哲学 并行计算 几何学
作者
Haiying Liu,Fengqian Sun,Jason Gu,Lixia Deng
出处
期刊:Sensors [MDPI AG]
卷期号:22 (15): 5817-5817 被引量:96
标识
DOI:10.3390/s22155817
摘要

In the research of computer vision, a very challenging problem is the detection of small objects. The existing detection algorithms often focus on detecting full-scale objects, without making proprietary optimization for detecting small-size objects. For small objects dense scenes, not only the accuracy is low, but also there is a certain waste of computing resources. An improved detection algorithm was proposed for small objects based on YOLOv5. By reasonably clipping the feature map output of the large object detection layer, the computing resources required by the model were significantly reduced and the model becomes more lightweight. An improved feature fusion method (PB-FPN) for small object detection based on PANet and BiFPN was proposed, which effectively increased the detection ability for small object of the algorithm. By introducing the spatial pyramid pooling (SPP) in the backbone network into the feature fusion network and connecting with the model prediction head, the performance of the algorithm was effectively enhanced. The experiments demonstrated that the improved algorithm has very good results in detection accuracy and real-time ability. Compared with the classical YOLOv5, the mAP@0.5 and mAP@0.5:0.95 of SF-YOLOv5 were increased by 1.6% and 0.8%, respectively, the number of parameters of the network were reduced by 68.2%, computational resources (FLOPs) were reduced by 12.7%, and the inferring time of the mode was reduced by 6.9%.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
你终硕发布了新的文献求助10
2秒前
2秒前
2秒前
FashionBoy应助坚定醉蓝采纳,获得10
4秒前
4秒前
5秒前
5秒前
Liu2025完成签到,获得积分10
5秒前
6秒前
7秒前
yunshui发布了新的文献求助10
7秒前
gab发布了新的文献求助10
8秒前
8秒前
张欣宇发布了新的文献求助10
9秒前
rui发布了新的文献求助10
9秒前
10秒前
Echo发布了新的文献求助10
11秒前
上官若男应助gab采纳,获得10
11秒前
包容耳机发布了新的文献求助30
11秒前
11秒前
开放尔烟发布了新的文献求助10
12秒前
见贤思齐发布了新的文献求助10
12秒前
和谐妙之发布了新的文献求助10
13秒前
13秒前
脑洞疼应助mars采纳,获得10
15秒前
量子星尘发布了新的文献求助10
16秒前
yo一天发布了新的文献求助10
17秒前
17秒前
17秒前
清秀的如柏完成签到,获得积分10
17秒前
18秒前
星辰大海应助预则立采纳,获得10
19秒前
thynkz完成签到,获得积分10
20秒前
见贤思齐完成签到,获得积分10
20秒前
Mars完成签到 ,获得积分20
20秒前
坚定醉蓝发布了新的文献求助10
22秒前
Qinghen发布了新的文献求助10
22秒前
25秒前
17完成签到,获得积分10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
Sport, Social Media, and Digital Technology: Sociological Approaches 650
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5593888
求助须知:如何正确求助?哪些是违规求助? 4679724
关于积分的说明 14811268
捐赠科研通 4645341
什么是DOI,文献DOI怎么找? 2534709
邀请新用户注册赠送积分活动 1502747
关于科研通互助平台的介绍 1469450