SF-YOLOv5: A Lightweight Small Object Detection Algorithm Based on Improved Feature Fusion Mode

计算机科学 联营 特征(语言学) 目标检测 人工智能 失败 棱锥(几何) 模式(计算机接口) 算法 模式识别(心理学) 光学(聚焦) 计算机视觉 数学 语言学 操作系统 光学 物理 哲学 并行计算 几何学
作者
Haiying Liu,Fengqian Sun,Jason Gu,Lixia Deng
出处
期刊:Sensors [MDPI AG]
卷期号:22 (15): 5817-5817 被引量:96
标识
DOI:10.3390/s22155817
摘要

In the research of computer vision, a very challenging problem is the detection of small objects. The existing detection algorithms often focus on detecting full-scale objects, without making proprietary optimization for detecting small-size objects. For small objects dense scenes, not only the accuracy is low, but also there is a certain waste of computing resources. An improved detection algorithm was proposed for small objects based on YOLOv5. By reasonably clipping the feature map output of the large object detection layer, the computing resources required by the model were significantly reduced and the model becomes more lightweight. An improved feature fusion method (PB-FPN) for small object detection based on PANet and BiFPN was proposed, which effectively increased the detection ability for small object of the algorithm. By introducing the spatial pyramid pooling (SPP) in the backbone network into the feature fusion network and connecting with the model prediction head, the performance of the algorithm was effectively enhanced. The experiments demonstrated that the improved algorithm has very good results in detection accuracy and real-time ability. Compared with the classical YOLOv5, the mAP@0.5 and mAP@0.5:0.95 of SF-YOLOv5 were increased by 1.6% and 0.8%, respectively, the number of parameters of the network were reduced by 68.2%, computational resources (FLOPs) were reduced by 12.7%, and the inferring time of the mode was reduced by 6.9%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
长欢发布了新的文献求助10
1秒前
xudonghui完成签到,获得积分10
4秒前
打打应助上邪采纳,获得10
4秒前
无或发布了新的文献求助10
5秒前
所所应助健壮凡桃采纳,获得10
6秒前
Grace应助健壮凡桃采纳,获得10
6秒前
赘婿应助健壮凡桃采纳,获得10
6秒前
啊啊啊完成签到 ,获得积分10
6秒前
6秒前
星期五完成签到 ,获得积分10
8秒前
9秒前
9秒前
深情安青应助派大星采纳,获得10
10秒前
10秒前
12秒前
好香的眼睛完成签到,获得积分10
14秒前
一颗葡萄发布了新的文献求助10
14秒前
14秒前
情怀应助czj采纳,获得10
14秒前
15秒前
尤尔竹发布了新的文献求助10
16秒前
不配.给不安冷风的求助进行了留言
16秒前
ABiao发布了新的文献求助10
16秒前
棉棉完成签到,获得积分10
17秒前
细心雨兰发布了新的文献求助10
17秒前
17秒前
ljy发布了新的文献求助20
18秒前
1874发布了新的文献求助10
18秒前
19秒前
YYP发布了新的文献求助10
20秒前
21秒前
21秒前
HHh发布了新的文献求助10
23秒前
bluse033发布了新的文献求助10
24秒前
齐德龙发布了新的文献求助10
24秒前
852应助doctorbba采纳,获得10
24秒前
一颗葡萄完成签到,获得积分10
26秒前
xi122完成签到 ,获得积分10
28秒前
tiangou发布了新的文献求助10
29秒前
高分求助中
Sustainability in Tides Chemistry 2000
Дружба 友好报 (1957-1958) 1000
The Data Economy: Tools and Applications 1000
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 600
PraxisRatgeber Mantiden., faszinierende Lauerjäger. – Buch gebraucht kaufe 600
A Dissection Guide & Atlas to the Rabbit 600
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3111061
求助须知:如何正确求助?哪些是违规求助? 2761270
关于积分的说明 7664744
捐赠科研通 2416259
什么是DOI,文献DOI怎么找? 1282426
科研通“疑难数据库(出版商)”最低求助积分说明 619014
版权声明 599478