清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

SF-YOLOv5: A Lightweight Small Object Detection Algorithm Based on Improved Feature Fusion Mode

计算机科学 联营 特征(语言学) 目标检测 人工智能 失败 棱锥(几何) 模式(计算机接口) 算法 模式识别(心理学) 光学(聚焦) 计算机视觉 数学 语言学 操作系统 光学 物理 哲学 并行计算 几何学
作者
Haiying Liu,Fengqian Sun,Jason Gu,Lixia Deng
出处
期刊:Sensors [MDPI AG]
卷期号:22 (15): 5817-5817 被引量:96
标识
DOI:10.3390/s22155817
摘要

In the research of computer vision, a very challenging problem is the detection of small objects. The existing detection algorithms often focus on detecting full-scale objects, without making proprietary optimization for detecting small-size objects. For small objects dense scenes, not only the accuracy is low, but also there is a certain waste of computing resources. An improved detection algorithm was proposed for small objects based on YOLOv5. By reasonably clipping the feature map output of the large object detection layer, the computing resources required by the model were significantly reduced and the model becomes more lightweight. An improved feature fusion method (PB-FPN) for small object detection based on PANet and BiFPN was proposed, which effectively increased the detection ability for small object of the algorithm. By introducing the spatial pyramid pooling (SPP) in the backbone network into the feature fusion network and connecting with the model prediction head, the performance of the algorithm was effectively enhanced. The experiments demonstrated that the improved algorithm has very good results in detection accuracy and real-time ability. Compared with the classical YOLOv5, the mAP@0.5 and mAP@0.5:0.95 of SF-YOLOv5 were increased by 1.6% and 0.8%, respectively, the number of parameters of the network were reduced by 68.2%, computational resources (FLOPs) were reduced by 12.7%, and the inferring time of the mode was reduced by 6.9%.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助科研通管家采纳,获得10
25秒前
科研通AI6应助科研通管家采纳,获得10
25秒前
开放青旋应助科研通管家采纳,获得10
25秒前
科研通AI2S应助科研通管家采纳,获得10
25秒前
科研通AI6应助科研通管家采纳,获得10
25秒前
28秒前
38秒前
勤奋流沙完成签到 ,获得积分10
44秒前
朴素海亦完成签到 ,获得积分10
53秒前
58秒前
1分钟前
1分钟前
1分钟前
小白菜完成签到,获得积分10
2分钟前
2分钟前
袁青寒完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
TEMPO发布了新的文献求助10
3分钟前
魔术师完成签到 ,获得积分10
3分钟前
3分钟前
瞿寒完成签到,获得积分10
3分钟前
快乐的笑阳完成签到,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
香蕉觅云应助huenguyenvan采纳,获得10
3分钟前
李健应助阿萨卡先生采纳,获得10
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
4分钟前
4分钟前
Ava应助阿萨卡先生采纳,获得10
4分钟前
ZaZa完成签到,获得积分10
4分钟前
4分钟前
4分钟前
李剑鸿完成签到,获得积分10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5715085
求助须知:如何正确求助?哪些是违规求助? 5230157
关于积分的说明 15274003
捐赠科研通 4866162
什么是DOI,文献DOI怎么找? 2612714
邀请新用户注册赠送积分活动 1562934
关于科研通互助平台的介绍 1520210