已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

DSCSSA: A Classification Framework for Spatiotemporal Features Extraction of Arrhythmia Based on the Seq2Seq Model With Attention Mechanism

心跳 人工智能 计算机科学 模式识别(心理学) 特征提取 过采样 节拍(声学) 人工神经网络 带宽(计算) 声学 计算机网络 计算机安全 物理
作者
Xiangdong Peng,Weiwei Shu,Congcheng Pan,Zejun Ke,Huaqiang Zhu,Xiao Na Zhou,William Wei Song
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:71: 1-12 被引量:9
标识
DOI:10.1109/tim.2022.3194906
摘要

In the field of arrhythmia classification, classification accuracy has always been a research hotspot. However, the noises of electrocardiogram (ECG) signals, the class imbalance of ECG data, and the complexity of spatiotemporal features of ECG data are all important factors affecting the accuracy of ECG arrhythmias classification. In this paper, a novel DSCSSA ECG arrhythmias classification framework is proposed. Firstly, discrete wavelet transform (DWT) is used to denoise and reconstruct ECG signals to improve the feature extraction ability of ECG signals. Then synthetic minority over-sampling technique (SMOTE) oversampling method is used to synthesize a new minority sample ECG signal to reduce the impact of ECG data imbalance on classification. Finally, a convolutional neural network (CNN) and sequence to sequence (Seq2Seq) classification model with attention mechanism based on bi-directional long short-term memory (Bi-LSTM) as the codec is used for arrhythmias classification, the model can give corresponding weight according to the importance of heartbeat features, and improve the ability to extract and filter the spatiotemporal features of heartbeats. In the classification of five heartbeat types, including normal beat (N), supraventricular ectopic beat (S), ventricular ectopic beat (V), fusion beat (F), and unknown beat (Q), the proposed method achieved overall accuracy (OA) value and Macro-F1 score of 99.28% and 95.70% respectively, in public MIT-BIH arrhythmia database. These methods are helpful to improve the effectiveness and clinical reference value of computer-aided ECG automatic classification diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
令狐惜海发布了新的文献求助10
刚刚
1秒前
1秒前
完美世界应助多多多多采纳,获得10
1秒前
李总要发财小苏发文章完成签到,获得积分10
2秒前
halo1994发布了新的文献求助10
2秒前
3秒前
路路发布了新的文献求助10
3秒前
4秒前
伶俐的背包完成签到,获得积分10
5秒前
Mimi发布了新的文献求助50
5秒前
5秒前
6秒前
小二郎应助jiwoong采纳,获得10
6秒前
啊啦啦完成签到,获得积分10
7秒前
稳重的向松完成签到,获得积分20
7秒前
9秒前
jersey完成签到,获得积分20
10秒前
10秒前
11秒前
谢海亮发布了新的文献求助10
12秒前
周志轩66发布了新的文献求助10
13秒前
多多多多发布了新的文献求助10
14秒前
隐形曼青应助恩佐采纳,获得10
17秒前
18秒前
Xieyusen发布了新的文献求助10
22秒前
舒伯特完成签到 ,获得积分10
23秒前
greentea完成签到,获得积分10
23秒前
ekswai发布了新的文献求助10
23秒前
25秒前
鳗鱼不尤发布了新的文献求助10
27秒前
1123完成签到,获得积分20
28秒前
余凉发布了新的文献求助30
31秒前
32秒前
量子星尘发布了新的文献求助10
33秒前
34秒前
昵称666应助1123采纳,获得10
34秒前
大姿兰卡眼睛完成签到 ,获得积分10
35秒前
35秒前
悟格完成签到,获得积分10
36秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956786
求助须知:如何正确求助?哪些是违规求助? 3502880
关于积分的说明 11110500
捐赠科研通 3233866
什么是DOI,文献DOI怎么找? 1787630
邀请新用户注册赠送积分活动 870713
科研通“疑难数据库(出版商)”最低求助积分说明 802172