Geographical match of objective and subjective measures of well-being at an intra-city scale

比例(比率) 地理 地图学 区域科学
作者
Guanpeng Dong,Zhipeng Zhang,Hang Zhang,Leying Wu
出处
期刊:Applied Geography [Elsevier]
卷期号:167: 103290-103290 被引量:1
标识
DOI:10.1016/j.apgeog.2024.103290
摘要

Despite human well-being serving as a crucial indicator for measuring social development and progress, the measurement of well-being faces great challenges. This study constructs a multi-level statistical model to investigate the geographical relationship between subjective well-being measure derived from a large-scale social survey and objective well-being measure derived by using a non-compensatory indicator aggregation technique and a variety of urban geospatial data. We find that a consistent resemblance between the subjective and objective measures of well-being at both the community (r = 0.61 with a p < 0.01) and sub-district scales (r = 0.62 with a p < 0.01) within a city. This finding is further supported by the estimation results from models that controls for a variety of covariate effects. Drawing on the close resemblance between the subjective and objective measures of human well-being, we develop a statistical model that links these two measurements to create a composite measure of well-being. Our results extend the understanding on the geographical match between subjective and objective measures of well-being at an intra-city spatial scale, and provide a new insight on how to leverage the emerging urban geospatial data and social survey when devising indicators of well-being.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fei完成签到 ,获得积分10
刚刚
踏实天空应助研友_LMBa6n采纳,获得30
1秒前
3秒前
大模型应助lgh采纳,获得10
3秒前
是问发布了新的文献求助10
4秒前
4秒前
无或完成签到,获得积分10
4秒前
4秒前
5秒前
弹弹谭完成签到,获得积分10
6秒前
淀粉肠发布了新的文献求助10
7秒前
小马甲应助逸群采纳,获得30
7秒前
sheh完成签到,获得积分20
7秒前
安安完成签到,获得积分10
8秒前
kukudou2发布了新的文献求助10
9秒前
Hudson发布了新的文献求助10
9秒前
TT完成签到,获得积分10
9秒前
12秒前
13秒前
17秒前
18秒前
Ava应助李健春采纳,获得10
19秒前
李爱国应助sheh采纳,获得10
19秒前
Duke_ethan完成签到,获得积分10
20秒前
高贵夏之完成签到,获得积分10
20秒前
21秒前
Crane发布了新的文献求助10
22秒前
碧蓝的果汁完成签到,获得积分10
23秒前
星河完成签到,获得积分10
24秒前
25秒前
斯文败类应助公孙朝雨采纳,获得10
26秒前
26秒前
曲初雪完成签到,获得积分10
26秒前
加油发布了新的文献求助10
28秒前
焦糖玛奇朵完成签到,获得积分10
28秒前
29秒前
zzp完成签到,获得积分10
29秒前
30秒前
科研通AI2S应助lalalall采纳,获得10
30秒前
打打应助北川六月采纳,获得10
30秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138888
求助须知:如何正确求助?哪些是违规求助? 2789815
关于积分的说明 7792820
捐赠科研通 2446185
什么是DOI,文献DOI怎么找? 1300930
科研通“疑难数据库(出版商)”最低求助积分说明 626066
版权声明 601079