RD-OpenMax: Rethinking OpenMax for Robust Realistic Open-Set Recognition

判别式 计算机科学 协方差 人工智能 分类器(UML) 联营 航程(航空) 模式识别(心理学) 机器学习 数学 统计 复合材料 材料科学
作者
Xiaojie Yin,Bing Cao,Qinghua Hu,Qilong Wang
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15
标识
DOI:10.1109/tnnls.2024.3394890
摘要

Open-set recognition (OSR) toward a practical open-world setting has attracted increasing research attention in recent years. However, existing OSR settings are either too idealized or focus on specific scenes such as long-tailed distribution and few-shot samples, which fail to capture the complexity of real-world scenarios. In this article, we propose a realistic OSR (ROSR) setting that covers a diverse range of challenging and real-world scenarios, including fine-grained cases with strong semantic correlation and a large number of species, few-shot samples, long-tailed sample distribution, dynamic inputs (e.g., images, spatio-temporal, and multimodal signals) and cross-domain adaptation. In particular, we rethink the simple and basic OpenMax for the ROSR setting and introduce a novel method, regularized discriminative OpenMax (RD-OpenMax), to handle the challenges in the ROSR setting. RD-OpenMax improves upon the basic OpenMax approach by introducing a covariance attention-based covariance pooling (CACP) module as a global aggregation step before the deep architecture's classifier. This module explores rich statistical information on features and provides discriminative distance scores for OpenMax. To address the instability of extreme value theory (EVT) estimation due to insufficient training samples under few-shot and long-tailed scenarios, we propose a regularized EVT (REVT) method based on Monte Carlo sampling to recalibrate the distribution of distance scores. As such, our RD-OpenMax performs a REVT model of distance scores generated by discriminative CACP representations to distinguish known classes and recognize unknown ones effectively and robustly. Extensive experiments are conducted on more than ten visual benchmarks across several scenarios, and the empirical comparisons show that the ROSR setting challenges existing state-of-the-art OSR approaches. Moreover, our RD-OpenMax clearly outperforms its counterparts under the ROSR setting while performing favorably against state-of-the-arts under the traditional OSR setting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健的小迷弟应助de君采纳,获得10
刚刚
xl应助苏苏采纳,获得10
1秒前
犹豫板油关注了科研通微信公众号
1秒前
lihailong发布了新的文献求助10
2秒前
3秒前
4秒前
6秒前
Rondab应助sweat采纳,获得10
7秒前
完美世界应助why采纳,获得10
7秒前
ZTK完成签到,获得积分10
7秒前
8秒前
9秒前
梦追阳完成签到 ,获得积分10
9秒前
9秒前
9秒前
9秒前
丘比特应助百草园采纳,获得10
13秒前
喜悦的水云完成签到 ,获得积分10
13秒前
13秒前
RuiRui完成签到,获得积分10
13秒前
yj17ying发布了新的文献求助10
13秒前
隐形曼青应助堕落叔叔采纳,获得10
14秒前
友好凡霜发布了新的文献求助10
15秒前
赘婿应助大力的菠萝采纳,获得30
19秒前
20秒前
21秒前
23秒前
堕落叔叔完成签到,获得积分10
24秒前
yj17ying完成签到,获得积分10
24秒前
why发布了新的文献求助10
25秒前
郝薇薇薇薇儿完成签到,获得积分10
26秒前
26秒前
27秒前
啊Cu吖完成签到,获得积分10
29秒前
堕落叔叔发布了新的文献求助10
29秒前
小园饼干完成签到,获得积分10
29秒前
依依发布了新的文献求助10
30秒前
量子星尘发布了新的文献求助30
31秒前
你好完成签到,获得积分10
32秒前
32秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959455
求助须知:如何正确求助?哪些是违规求助? 3505634
关于积分的说明 11125092
捐赠科研通 3237449
什么是DOI,文献DOI怎么找? 1789148
邀请新用户注册赠送积分活动 871583
科研通“疑难数据库(出版商)”最低求助积分说明 802858