RD-OpenMax: Rethinking OpenMax for Robust Realistic Open-Set Recognition

判别式 计算机科学 协方差 人工智能 分类器(UML) 联营 航程(航空) 模式识别(心理学) 机器学习 数学 统计 材料科学 复合材料
作者
Xiaojie Yin,Bing Cao,Qinghua Hu,Qilong Wang
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15
标识
DOI:10.1109/tnnls.2024.3394890
摘要

Open-set recognition (OSR) toward a practical open-world setting has attracted increasing research attention in recent years. However, existing OSR settings are either too idealized or focus on specific scenes such as long-tailed distribution and few-shot samples, which fail to capture the complexity of real-world scenarios. In this article, we propose a realistic OSR (ROSR) setting that covers a diverse range of challenging and real-world scenarios, including fine-grained cases with strong semantic correlation and a large number of species, few-shot samples, long-tailed sample distribution, dynamic inputs (e.g., images, spatio-temporal, and multimodal signals) and cross-domain adaptation. In particular, we rethink the simple and basic OpenMax for the ROSR setting and introduce a novel method, regularized discriminative OpenMax (RD-OpenMax), to handle the challenges in the ROSR setting. RD-OpenMax improves upon the basic OpenMax approach by introducing a covariance attention-based covariance pooling (CACP) module as a global aggregation step before the deep architecture's classifier. This module explores rich statistical information on features and provides discriminative distance scores for OpenMax. To address the instability of extreme value theory (EVT) estimation due to insufficient training samples under few-shot and long-tailed scenarios, we propose a regularized EVT (REVT) method based on Monte Carlo sampling to recalibrate the distribution of distance scores. As such, our RD-OpenMax performs a REVT model of distance scores generated by discriminative CACP representations to distinguish known classes and recognize unknown ones effectively and robustly. Extensive experiments are conducted on more than ten visual benchmarks across several scenarios, and the empirical comparisons show that the ROSR setting challenges existing state-of-the-art OSR approaches. Moreover, our RD-OpenMax clearly outperforms its counterparts under the ROSR setting while performing favorably against state-of-the-arts under the traditional OSR setting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ASUNA完成签到,获得积分10
刚刚
XTM发布了新的文献求助10
刚刚
BareBear应助小溜溜采纳,获得10
刚刚
cocolu应助小溜溜采纳,获得10
刚刚
顾矜应助小溜溜采纳,获得10
刚刚
桐桐应助SiDi采纳,获得10
刚刚
刚刚
啾比文发布了新的文献求助10
刚刚
南宫臻发布了新的文献求助10
1秒前
neverever完成签到,获得积分10
1秒前
CXS完成签到,获得积分10
2秒前
顾青应助千逐采纳,获得10
2秒前
3秒前
labxgr发布了新的文献求助10
5秒前
小明发布了新的文献求助10
6秒前
7秒前
7秒前
8秒前
丘比特应助啾比文采纳,获得10
8秒前
8秒前
零下负七完成签到,获得积分10
8秒前
苇一完成签到,获得积分10
9秒前
现代的诗槐应助xinran采纳,获得10
9秒前
dengy发布了新的文献求助10
10秒前
小蘑菇应助23采纳,获得10
10秒前
looon完成签到,获得积分10
10秒前
阿布发布了新的文献求助10
11秒前
11秒前
田様应助Halo_Dai采纳,获得10
12秒前
12秒前
13秒前
小栗完成签到,获得积分10
13秒前
13秒前
zzzzzdz发布了新的文献求助10
14秒前
14秒前
14秒前
15秒前
16秒前
Susan发布了新的文献求助10
16秒前
322628完成签到,获得积分10
17秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
Medical technology industry in China 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312474
求助须知:如何正确求助?哪些是违规求助? 2945127
关于积分的说明 8523062
捐赠科研通 2620847
什么是DOI,文献DOI怎么找? 1433151
科研通“疑难数据库(出版商)”最低求助积分说明 664881
邀请新用户注册赠送积分活动 650255