Unveiling the Potential of Covalent Organic Frameworks for Energy Storage: Developments, Challenges, and Future Prospects

材料科学 超级电容器 电化学储能 储能 纳米技术 灵活性(工程) 电化学 电极 物理 统计 功率(物理) 化学 数学 物理化学 量子力学
作者
Prashant Dubey,Vishal Shrivastav,Tribani Boruah,Giorgio Zoppellaro,Radek Zbořil,Aristides Bakandritsos,Shashank Sundriyal
出处
期刊:Advanced Energy Materials [Wiley]
卷期号:14 (24) 被引量:3
标识
DOI:10.1002/aenm.202400521
摘要

Abstract Covalent organic frameworks (COFs) are porous structures emerging as promising electrode materials due to their high structural diversity, controlled and wide pore network, and amenability to chemical modifications. COFs are solely composed of periodically arranged organic molecules, resulting in lightweight materials. Their inherent properties, such as extended surface area and diverse framework topologies, along with their high proclivity to chemical modification, have positioned COFs as sophisticated materials in the realm of electrochemical energy storage (EES). The modular structure of COFs facilitates the integration of key functions such as redox‐active moieties, fast charge diffusion channels, composite formation with conductive counterparts, and highly porous network for accommodating charged energy carriers, which can significantly enhance their electrochemical performance. However, ascribing intricate porosity and redox‐active functionalities to a single COF structure, while maintaining long‐term electrochemical stability, is challenging. Efforts to overcome these hurdles embrace strategies such as the implementation of reversible linkages for structural flexibility, stimuli‐responsive functionalities, and incorporating chemical groups to promote the formation of COF heterostructures. This review focuses on the recent progress of COFs in EES devices, such as batteries and supercapacitors, through a meticulous exploration of the latest strategies aimed at optimizing COFs as advanced electrodes in future EES technologies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小蘑菇应助谦让黎云采纳,获得10
1秒前
1秒前
111发布了新的文献求助10
1秒前
盐好香发布了新的文献求助10
2秒前
2秒前
2秒前
赵康康发布了新的文献求助10
3秒前
DDZZGG发布了新的文献求助10
3秒前
4秒前
滑腻腻的小鱼完成签到 ,获得积分20
4秒前
詹军完成签到,获得积分10
4秒前
酷炫小伙发布了新的文献求助10
5秒前
5秒前
lj完成签到 ,获得积分20
7秒前
开朗又菱发布了新的文献求助10
7秒前
NexusExplorer应助靓丽的乌龟采纳,获得10
7秒前
可靠凤发布了新的文献求助10
8秒前
9秒前
天意如此完成签到,获得积分10
9秒前
小马甲应助抹茶肥肠采纳,获得10
9秒前
无私的含海完成签到,获得积分10
11秒前
共享精神应助酷炫小伙采纳,获得10
13秒前
13秒前
毛豆爸爸应助呆瓜采纳,获得10
13秒前
14秒前
orixero应助龙眼采纳,获得10
14秒前
Kaysarr发布了新的文献求助10
14秒前
15秒前
15秒前
上官若男应助DDZZGG采纳,获得10
15秒前
17秒前
19秒前
辛勤源智完成签到,获得积分10
19秒前
19秒前
FashionBoy应助jiao采纳,获得10
20秒前
20秒前
DrLiu完成签到,获得积分10
21秒前
木榕城发布了新的文献求助10
22秒前
22秒前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3129513
求助须知:如何正确求助?哪些是违规求助? 2780318
关于积分的说明 7747496
捐赠科研通 2435637
什么是DOI,文献DOI怎么找? 1294181
科研通“疑难数据库(出版商)”最低求助积分说明 623590
版权声明 600570