已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Quasi-random Fractal Search (QRFS): A dynamic metaheuristic with sigmoid population decrement for global optimization

乙状窦函数 元启发式 分形 数学优化 人口 计算机科学 数学 人工智能 数学分析 人工神经网络 人口学 社会学
作者
Luis Alberto Delfín Beltrán,Mario A. Navarro,Diego Oliva,Diego Campos-Peña,Jorge Armando Ramos-Frutos,Saúl Zapotecas–Martínez
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:254: 124400-124400
标识
DOI:10.1016/j.eswa.2024.124400
摘要

Global optimization of complex and high-dimensional functions remains a central challenge with broad applications in science and engineering. This study introduces a new optimization approach called quasi-random metaheuristic based on fractal search (QRFS), which harnesses the power of fractal geometry, low discrepancy sequences, and intelligent search space partitioning techniques. The QRFS uses fractals' inherent self-similarity and intricate structure to guide the solution space exploration. For the proposal, a deterministic but quasi-random element is used in the search process using low discrepancy sequences, such as Sobol, Halton, Hammersley, and Latin Hypercube. This integration allows the algorithm to systematically cover the search space while maintaining the level of diversity necessary for efficient exploration. The QRFS employs a dynamic strategy of partitioning the search space and reducing the population of solutions to optimize the use of function accesses, which causes it to adapt well to the characteristics of the problem. The algorithm intelligently identifies and prioritizes promising regions within the fractal-based representation, allocating computational resources where they are most likely to yield optimal solutions. Experimental evaluations on several benchmark problems demonstrate that QRFS consistently outperforms modern, canonical metaheuristics and variants of algorithms such as differential evolution (DE), particle swarm optimization (PSO), covariance matrix adaptive evolution strategy (CMA-ES), regarding solution quality. Besides, the algorithm shows remarkable scalability, which makes it suitable for high-dimensional optimization tasks. Overall, QRFS offers a robust and efficient approach to solving complex optimization problems in various domains, paving the way for improved decision-making in real-world applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YDKY完成签到 ,获得积分10
2秒前
1no完成签到 ,获得积分10
2秒前
6秒前
dywen完成签到,获得积分10
7秒前
王志鹏完成签到 ,获得积分10
9秒前
11秒前
学术废物完成签到 ,获得积分10
12秒前
12秒前
12秒前
Aikesi完成签到,获得积分10
12秒前
tim发布了新的文献求助10
15秒前
江南水乡呜呜呜完成签到,获得积分10
16秒前
英俊的铭应助1234567xjy采纳,获得10
16秒前
嘿哈发布了新的文献求助10
16秒前
17秒前
今后应助Wang采纳,获得10
19秒前
Singularity发布了新的文献求助10
19秒前
乐悠发布了新的文献求助10
20秒前
20秒前
丢丢发布了新的文献求助10
20秒前
HCLonely应助Kristine采纳,获得10
21秒前
孤独的大灰狼完成签到 ,获得积分10
22秒前
22秒前
tim完成签到,获得积分10
22秒前
24秒前
Huobol完成签到,获得积分10
26秒前
wave发布了新的文献求助10
28秒前
斯文败类应助十里采纳,获得10
29秒前
31秒前
嘿哈完成签到,获得积分10
33秒前
36秒前
36秒前
千纸鹤发布了新的文献求助10
38秒前
如意果汁发布了新的文献求助10
41秒前
FashionBoy应助谦让寄容采纳,获得10
41秒前
完美世界应助plumephoenix采纳,获得10
44秒前
morena应助迅速的八宝粥采纳,获得80
44秒前
852应助乐悠采纳,获得10
45秒前
48秒前
斯文败类应助科研通管家采纳,获得10
49秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 600
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3234378
求助须知:如何正确求助?哪些是违规求助? 2880736
关于积分的说明 8216789
捐赠科研通 2548319
什么是DOI,文献DOI怎么找? 1377665
科研通“疑难数据库(出版商)”最低求助积分说明 647925
邀请新用户注册赠送积分活动 623304