Quasi-random Fractal Search (QRFS): A dynamic metaheuristic with sigmoid population decrement for global optimization

乙状窦函数 元启发式 分形 数学优化 人口 计算机科学 数学 人工智能 数学分析 人工神经网络 社会学 人口学
作者
Luis Alberto Delfín Beltrán,Mario A. Navarro,Diego Oliva,Diego Campos-Peña,Jorge Armando Ramos-Frutos,Saúl Zapotecas–Martínez
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:254: 124400-124400
标识
DOI:10.1016/j.eswa.2024.124400
摘要

Global optimization of complex and high-dimensional functions remains a central challenge with broad applications in science and engineering. This study introduces a new optimization approach called quasi-random metaheuristic based on fractal search (QRFS), which harnesses the power of fractal geometry, low discrepancy sequences, and intelligent search space partitioning techniques. The QRFS uses fractals' inherent self-similarity and intricate structure to guide the solution space exploration. For the proposal, a deterministic but quasi-random element is used in the search process using low discrepancy sequences, such as Sobol, Halton, Hammersley, and Latin Hypercube. This integration allows the algorithm to systematically cover the search space while maintaining the level of diversity necessary for efficient exploration. The QRFS employs a dynamic strategy of partitioning the search space and reducing the population of solutions to optimize the use of function accesses, which causes it to adapt well to the characteristics of the problem. The algorithm intelligently identifies and prioritizes promising regions within the fractal-based representation, allocating computational resources where they are most likely to yield optimal solutions. Experimental evaluations on several benchmark problems demonstrate that QRFS consistently outperforms modern, canonical metaheuristics and variants of algorithms such as differential evolution (DE), particle swarm optimization (PSO), covariance matrix adaptive evolution strategy (CMA-ES), regarding solution quality. Besides, the algorithm shows remarkable scalability, which makes it suitable for high-dimensional optimization tasks. Overall, QRFS offers a robust and efficient approach to solving complex optimization problems in various domains, paving the way for improved decision-making in real-world applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
深情安青应助DDTT采纳,获得10
1秒前
taozidetao完成签到 ,获得积分10
1秒前
共享精神应助犹豫帆布鞋采纳,获得10
1秒前
小欧文完成签到,获得积分10
1秒前
nasya完成签到,获得积分10
2秒前
neo发布了新的文献求助10
2秒前
2秒前
2秒前
今天也要开心Y完成签到,获得积分10
2秒前
喜悦芝麻完成签到 ,获得积分10
2秒前
沉默是金12完成签到 ,获得积分10
3秒前
情怀应助寒冷书竹采纳,获得10
3秒前
科研完成签到,获得积分10
4秒前
LLC完成签到 ,获得积分10
4秒前
4秒前
思岩完成签到 ,获得积分10
4秒前
5秒前
小袁完成签到,获得积分10
5秒前
5秒前
中级中级完成签到,获得积分20
5秒前
5秒前
starryxm完成签到,获得积分10
5秒前
Akim应助胡天萌采纳,获得10
5秒前
徐慕源发布了新的文献求助10
5秒前
nikai完成签到,获得积分10
5秒前
杜嘟嘟发布了新的文献求助10
5秒前
科研通AI5应助岁月轮回采纳,获得10
5秒前
xiu完成签到,获得积分10
6秒前
JWang完成签到,获得积分20
6秒前
7秒前
小橙子发布了新的文献求助30
7秒前
8秒前
科研通AI5应助zino采纳,获得10
8秒前
shepherd完成签到 ,获得积分10
8秒前
Brave_1完成签到 ,获得积分10
8秒前
8R60d8应助学术小黄采纳,获得10
9秒前
南宫萍完成签到,获得积分10
9秒前
9秒前
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678