Quasi-random Fractal Search (QRFS): A dynamic metaheuristic with sigmoid population decrement for global optimization

乙状窦函数 元启发式 分形 数学优化 人口 计算机科学 数学 人工智能 数学分析 人工神经网络 社会学 人口学
作者
Luis Alberto Delfín Beltrán,Mario A. Navarro,Diego Oliva,Diego Campos-Peña,Jorge Ramos-Frutos,Saúl Zapotecas–Martínez
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:254: 124400-124400 被引量:4
标识
DOI:10.1016/j.eswa.2024.124400
摘要

Global optimization of complex and high-dimensional functions remains a central challenge with broad applications in science and engineering. This study introduces a new optimization approach called quasi-random metaheuristic based on fractal search (QRFS), which harnesses the power of fractal geometry, low discrepancy sequences, and intelligent search space partitioning techniques. The QRFS uses fractals' inherent self-similarity and intricate structure to guide the solution space exploration. For the proposal, a deterministic but quasi-random element is used in the search process using low discrepancy sequences, such as Sobol, Halton, Hammersley, and Latin Hypercube. This integration allows the algorithm to systematically cover the search space while maintaining the level of diversity necessary for efficient exploration. The QRFS employs a dynamic strategy of partitioning the search space and reducing the population of solutions to optimize the use of function accesses, which causes it to adapt well to the characteristics of the problem. The algorithm intelligently identifies and prioritizes promising regions within the fractal-based representation, allocating computational resources where they are most likely to yield optimal solutions. Experimental evaluations on several benchmark problems demonstrate that QRFS consistently outperforms modern, canonical metaheuristics and variants of algorithms such as differential evolution (DE), particle swarm optimization (PSO), covariance matrix adaptive evolution strategy (CMA-ES), regarding solution quality. Besides, the algorithm shows remarkable scalability, which makes it suitable for high-dimensional optimization tasks. Overall, QRFS offers a robust and efficient approach to solving complex optimization problems in various domains, paving the way for improved decision-making in real-world applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小白完成签到,获得积分10
1秒前
3秒前
元谷雪发布了新的文献求助10
4秒前
香蕉觅云应助77采纳,获得10
5秒前
赘婿应助阿正嗖啪采纳,获得10
5秒前
5秒前
慕青应助28551采纳,获得10
6秒前
CipherSage应助俏皮的吐司采纳,获得10
6秒前
7秒前
力劈华山完成签到,获得积分10
7秒前
科研通AI6应助fzzf采纳,获得10
8秒前
8秒前
8秒前
8秒前
量子星尘发布了新的文献求助10
9秒前
南桥完成签到,获得积分10
9秒前
别说话发布了新的文献求助10
9秒前
小白不白完成签到,获得积分10
10秒前
10秒前
美满的涔发布了新的文献求助10
10秒前
搜集达人应助尉迟十八采纳,获得60
10秒前
赘婿应助聪慧烤鸡采纳,获得10
12秒前
量子星尘发布了新的文献求助10
12秒前
hearz发布了新的文献求助20
12秒前
LiXQ发布了新的文献求助10
13秒前
愚人发布了新的文献求助10
13秒前
yangtong发布了新的文献求助10
13秒前
15秒前
latadawang发布了新的文献求助30
16秒前
17秒前
18秒前
19秒前
19秒前
生动安波发布了新的文献求助10
20秒前
奥特曼发布了新的文献求助10
20秒前
小马甲应助22采纳,获得10
20秒前
兴奋蘑菇发布了新的文献求助10
20秒前
20秒前
hao123完成签到,获得积分10
21秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695408
求助须知:如何正确求助?哪些是违规求助? 5101761
关于积分的说明 15216105
捐赠科研通 4851704
什么是DOI,文献DOI怎么找? 2602676
邀请新用户注册赠送积分活动 1554320
关于科研通互助平台的介绍 1512360