Quasi-random Fractal Search (QRFS): A dynamic metaheuristic with sigmoid population decrement for global optimization

乙状窦函数 元启发式 分形 数学优化 人口 计算机科学 数学 人工智能 数学分析 人工神经网络 社会学 人口学
作者
Luis Alberto Delfín Beltrán,Mario A. Navarro,Diego Oliva,Diego Campos-Peña,Jorge Ramos-Frutos,Saúl Zapotecas–Martínez
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:254: 124400-124400 被引量:4
标识
DOI:10.1016/j.eswa.2024.124400
摘要

Global optimization of complex and high-dimensional functions remains a central challenge with broad applications in science and engineering. This study introduces a new optimization approach called quasi-random metaheuristic based on fractal search (QRFS), which harnesses the power of fractal geometry, low discrepancy sequences, and intelligent search space partitioning techniques. The QRFS uses fractals' inherent self-similarity and intricate structure to guide the solution space exploration. For the proposal, a deterministic but quasi-random element is used in the search process using low discrepancy sequences, such as Sobol, Halton, Hammersley, and Latin Hypercube. This integration allows the algorithm to systematically cover the search space while maintaining the level of diversity necessary for efficient exploration. The QRFS employs a dynamic strategy of partitioning the search space and reducing the population of solutions to optimize the use of function accesses, which causes it to adapt well to the characteristics of the problem. The algorithm intelligently identifies and prioritizes promising regions within the fractal-based representation, allocating computational resources where they are most likely to yield optimal solutions. Experimental evaluations on several benchmark problems demonstrate that QRFS consistently outperforms modern, canonical metaheuristics and variants of algorithms such as differential evolution (DE), particle swarm optimization (PSO), covariance matrix adaptive evolution strategy (CMA-ES), regarding solution quality. Besides, the algorithm shows remarkable scalability, which makes it suitable for high-dimensional optimization tasks. Overall, QRFS offers a robust and efficient approach to solving complex optimization problems in various domains, paving the way for improved decision-making in real-world applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小哥门完成签到,获得积分10
1秒前
2秒前
2秒前
garrick发布了新的文献求助10
3秒前
Rondab应助麦子采纳,获得10
4秒前
Rondab应助麦子采纳,获得10
4秒前
5秒前
6秒前
lxcy0612发布了新的文献求助10
7秒前
Yunus完成签到,获得积分10
8秒前
Jogging发布了新的文献求助30
8秒前
轻松的悟空完成签到 ,获得积分10
9秒前
10秒前
10秒前
Yunus发布了新的文献求助10
11秒前
zho应助keysn采纳,获得10
13秒前
15秒前
Jogging完成签到,获得积分10
16秒前
16秒前
Khalil发布了新的文献求助10
19秒前
orixero应助自行车维修采纳,获得10
19秒前
Adenine完成签到 ,获得积分10
19秒前
20秒前
慕青应助科研通管家采纳,获得10
20秒前
小蘑菇应助科研通管家采纳,获得10
20秒前
打打应助科研通管家采纳,获得10
20秒前
天天快乐应助科研通管家采纳,获得10
21秒前
wanci应助科研通管家采纳,获得10
21秒前
脑洞疼应助科研通管家采纳,获得10
21秒前
21秒前
大个应助科研通管家采纳,获得10
21秒前
21秒前
21秒前
21秒前
yar应助科研通管家采纳,获得10
21秒前
21秒前
21秒前
21秒前
沉默安波完成签到,获得积分10
23秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993004
求助须知:如何正确求助?哪些是违规求助? 3533801
关于积分的说明 11263775
捐赠科研通 3273597
什么是DOI,文献DOI怎么找? 1806113
邀请新用户注册赠送积分活动 882955
科研通“疑难数据库(出版商)”最低求助积分说明 809629