Quasi-random Fractal Search (QRFS): A dynamic metaheuristic with sigmoid population decrement for global optimization

乙状窦函数 元启发式 分形 数学优化 人口 计算机科学 数学 人工智能 数学分析 人工神经网络 社会学 人口学
作者
Luis Alberto Delfín Beltrán,Mario A. Navarro,Diego Oliva,Diego Campos-Peña,Jorge Ramos-Frutos,Saúl Zapotecas–Martínez
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:254: 124400-124400 被引量:4
标识
DOI:10.1016/j.eswa.2024.124400
摘要

Global optimization of complex and high-dimensional functions remains a central challenge with broad applications in science and engineering. This study introduces a new optimization approach called quasi-random metaheuristic based on fractal search (QRFS), which harnesses the power of fractal geometry, low discrepancy sequences, and intelligent search space partitioning techniques. The QRFS uses fractals' inherent self-similarity and intricate structure to guide the solution space exploration. For the proposal, a deterministic but quasi-random element is used in the search process using low discrepancy sequences, such as Sobol, Halton, Hammersley, and Latin Hypercube. This integration allows the algorithm to systematically cover the search space while maintaining the level of diversity necessary for efficient exploration. The QRFS employs a dynamic strategy of partitioning the search space and reducing the population of solutions to optimize the use of function accesses, which causes it to adapt well to the characteristics of the problem. The algorithm intelligently identifies and prioritizes promising regions within the fractal-based representation, allocating computational resources where they are most likely to yield optimal solutions. Experimental evaluations on several benchmark problems demonstrate that QRFS consistently outperforms modern, canonical metaheuristics and variants of algorithms such as differential evolution (DE), particle swarm optimization (PSO), covariance matrix adaptive evolution strategy (CMA-ES), regarding solution quality. Besides, the algorithm shows remarkable scalability, which makes it suitable for high-dimensional optimization tasks. Overall, QRFS offers a robust and efficient approach to solving complex optimization problems in various domains, paving the way for improved decision-making in real-world applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一二发布了新的文献求助10
刚刚
刚刚
1秒前
WW发布了新的文献求助10
1秒前
wusts完成签到,获得积分10
1秒前
王昕钥完成签到,获得积分10
2秒前
koko发布了新的文献求助10
2秒前
石头关注了科研通微信公众号
3秒前
箫涵完成签到,获得积分10
4秒前
4秒前
俊辰发布了新的文献求助10
4秒前
Ty发布了新的文献求助10
4秒前
5秒前
6秒前
木可可发布了新的文献求助10
6秒前
wusts发布了新的文献求助10
6秒前
7秒前
heibaixiang完成签到,获得积分10
7秒前
打打应助tt采纳,获得10
7秒前
7秒前
在水一方应助夏沫星星球采纳,获得10
8秒前
林林完成签到,获得积分10
8秒前
8秒前
8秒前
9秒前
屯屯鱼发布了新的文献求助10
9秒前
9秒前
orixero应助哎呀哎呀呀采纳,获得10
9秒前
共享精神应助太阳啊采纳,获得10
9秒前
10秒前
orixero应助种子采纳,获得10
11秒前
Lucas应助刘威采纳,获得10
11秒前
12秒前
13秒前
深年完成签到,获得积分10
13秒前
13秒前
An完成签到,获得积分10
13秒前
华仔应助Xhhaai采纳,获得10
13秒前
14秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
从k到英国情人 1700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5776692
求助须知:如何正确求助?哪些是违规求助? 5630245
关于积分的说明 15443636
捐赠科研通 4908741
什么是DOI,文献DOI怎么找? 2641390
邀请新用户注册赠送积分活动 1589383
关于科研通互助平台的介绍 1543956