Multi-agent deep reinforcement learning for hyperspectral band selection with hybrid teacher guide

高光谱成像 强化学习 选择(遗传算法) 人工智能 钢筋 计算机科学 机器学习 心理学 社会心理学
作者
Jie Feng,Qiyang Gao,Ronghua Shang,Xianghai Cao,Gaiqin Bai,Xiangrong Zhang,Licheng Jiao
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:299: 112044-112044 被引量:2
标识
DOI:10.1016/j.knosys.2024.112044
摘要

Due to the presence of noisy and highly redundant bands in hyperspectral images (HSIs), band selection serves as a key preprocessing for downstream classification tasks. Recently, deep reinforcement learning (DRL) has been developed as a new trend for band selection of HSIs. Existing DRL-based methods often adopt single-agent, which are prone to fall into local optima due to an excessive action space. The multi-agent methods provide a feasible solution, but often require too much computation. To address these problems, a novel multi-agent DRL method with hybrid teacher guide (MH-DRL) is proposed for band selection of HSIs. In MH-DRL, each agent corresponding to a spectral band decides whether this band is selected. Moreover, a presentation-evaluation network (PE-Net) is constructed to design the reward by evaluating the candidate band subsets without any fine-tuning and represent the state by extracting the spatial-spectral features of HSIs. Then, three kinds of experienced band selection models are regarded as the teachers and designed to participate in the band exploration of DRL, which can improve the learning effectiveness and efficiency by accumulating the external knowledge from diverse teacher models. Finally, deep Q-learning algorithm is designed to update the agents and improve their self-learning ability from continuous exploration. Experimental results on three widely-used HSI data verify the performance of the proposed method better than some advanced band selection algorithms of HSIs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
moumou完成签到,获得积分10
刚刚
英俊的铭应助CATH采纳,获得10
2秒前
2秒前
舒心傲易完成签到,获得积分10
3秒前
慕青应助蓝天采纳,获得10
3秒前
4秒前
斯文败类应助杜小杜采纳,获得10
4秒前
wangpinyl发布了新的文献求助10
5秒前
5秒前
KasenDen发布了新的文献求助10
5秒前
柚子苏发布了新的文献求助10
5秒前
totalMiss完成签到,获得积分10
6秒前
我是老大应助YY采纳,获得10
6秒前
LmY大帅比发布了新的文献求助10
7秒前
7秒前
abby发布了新的文献求助10
8秒前
ding应助PURPLE采纳,获得30
8秒前
gyq发布了新的文献求助10
9秒前
只争朝夕应助Zhang采纳,获得10
10秒前
明亮的小蘑菇完成签到 ,获得积分10
11秒前
11秒前
唐唐发布了新的文献求助10
11秒前
函数完成签到 ,获得积分10
13秒前
wangpinyl完成签到,获得积分10
13秒前
13秒前
科研通AI6应助yyanxuemin919采纳,获得10
13秒前
大菊完成签到,获得积分10
14秒前
蓝天发布了新的文献求助10
15秒前
abby完成签到,获得积分10
16秒前
Stroeve发布了新的文献求助10
16秒前
LmY大帅比完成签到,获得积分10
16秒前
龙虾花甲发布了新的文献求助10
16秒前
16秒前
17秒前
yangyang发布了新的文献求助30
17秒前
18秒前
xuzb完成签到,获得积分10
19秒前
19秒前
20秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
King Tyrant 600
Essential Guides for Early Career Teachers: Mental Well-being and Self-care 500
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5563294
求助须知:如何正确求助?哪些是违规求助? 4648146
关于积分的说明 14683749
捐赠科研通 4590165
什么是DOI,文献DOI怎么找? 2518308
邀请新用户注册赠送积分活动 1491038
关于科研通互助平台的介绍 1462325