Multi-agent deep reinforcement learning for hyperspectral band selection with hybrid teacher guide

高光谱成像 强化学习 选择(遗传算法) 人工智能 钢筋 计算机科学 机器学习 心理学 社会心理学
作者
Jie Feng,Qiyang Gao,Ronghua Shang,Xianghai Cao,Gaiqin Bai,Xiangrong Zhang,Licheng Jiao
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:299: 112044-112044 被引量:2
标识
DOI:10.1016/j.knosys.2024.112044
摘要

Due to the presence of noisy and highly redundant bands in hyperspectral images (HSIs), band selection serves as a key preprocessing for downstream classification tasks. Recently, deep reinforcement learning (DRL) has been developed as a new trend for band selection of HSIs. Existing DRL-based methods often adopt single-agent, which are prone to fall into local optima due to an excessive action space. The multi-agent methods provide a feasible solution, but often require too much computation. To address these problems, a novel multi-agent DRL method with hybrid teacher guide (MH-DRL) is proposed for band selection of HSIs. In MH-DRL, each agent corresponding to a spectral band decides whether this band is selected. Moreover, a presentation-evaluation network (PE-Net) is constructed to design the reward by evaluating the candidate band subsets without any fine-tuning and represent the state by extracting the spatial-spectral features of HSIs. Then, three kinds of experienced band selection models are regarded as the teachers and designed to participate in the band exploration of DRL, which can improve the learning effectiveness and efficiency by accumulating the external knowledge from diverse teacher models. Finally, deep Q-learning algorithm is designed to update the agents and improve their self-learning ability from continuous exploration. Experimental results on three widely-used HSI data verify the performance of the proposed method better than some advanced band selection algorithms of HSIs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助Green采纳,获得10
刚刚
huang发布了新的文献求助10
1秒前
lin应助sjr采纳,获得10
1秒前
1132458610发布了新的文献求助10
1秒前
和平使命应助阿尔卑斯采纳,获得10
1秒前
gao发布了新的文献求助10
1秒前
lan发布了新的文献求助10
2秒前
wwho_O完成签到 ,获得积分10
2秒前
离线完成签到,获得积分10
3秒前
Stormi发布了新的文献求助10
3秒前
爱科研大老曹完成签到,获得积分10
3秒前
4秒前
JamesPei应助火鸡味锅巴采纳,获得10
4秒前
4秒前
研友_VZG7GZ应助wuming7890采纳,获得50
4秒前
4秒前
ccc完成签到,获得积分10
5秒前
半缘君完成签到,获得积分10
6秒前
6秒前
一直很安静完成签到,获得积分10
6秒前
年轻绮露发布了新的文献求助10
6秒前
He发布了新的文献求助30
7秒前
是毛果芸香碱完成签到,获得积分10
7秒前
huang完成签到,获得积分10
7秒前
7秒前
CipherSage应助liuqizong123采纳,获得10
7秒前
慕青应助西西弗采纳,获得20
8秒前
aldblm关注了科研通微信公众号
8秒前
JamesPei应助阳光的安波采纳,获得10
9秒前
南_发布了新的文献求助10
9秒前
野酒发布了新的文献求助10
9秒前
Owen应助成就砖头采纳,获得10
10秒前
10秒前
10秒前
研友_8DVEpn完成签到,获得积分10
10秒前
11秒前
听雨发布了新的文献求助10
11秒前
12秒前
13秒前
欣慰未来发布了新的文献求助10
13秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 890
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Fundamentals of Dispersed Multiphase Flows 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3259144
求助须知:如何正确求助?哪些是违规求助? 2900723
关于积分的说明 8312407
捐赠科研通 2570106
什么是DOI,文献DOI怎么找? 1396229
科研通“疑难数据库(出版商)”最低求助积分说明 653443
邀请新用户注册赠送积分活动 631379