生物炭
固碳
稻草
土壤碳
环境科学
溶解有机碳
碳纤维
农学
总有机碳
稻草
斜线和字符
木炭
生物量(生态学)
环境化学
土壤有机质
土壤水分
化学
土壤科学
二氧化碳
热解
生物
材料科学
有机化学
复合数
复合材料
作者
Lanfang Han,B.S. Liu,Yu Luo,Liying Chen,Chuanxin Ma,Chao Xu,Ke Sun,Baoshan Xing
标识
DOI:10.1016/j.soilbio.2024.109500
摘要
Biochar of low-medium temperature may contain abundant dissolved organic carbon (BDOC), affecting its priming effect and carbon sequestration potential in soils. However, the direct and quantitative evidence for such impacts remains lacking. This study conducted incubation experiments on maize straw-derived 300/450 °C biochar, BDOC-extracted biochar residues and BDOC, and applied δ13C analysis to quantify biochar's mineralization and their priming effects on native soil organic carbon in a paddy soil. BDOC contained abundant lipid-, protein-, carbohydrate-like species, serving as nutrients for the metabolism of microorganisms, and thus enhanced native soil organic carbon's mineralization by 15–20%. After BDOC extraction, 300 °C biochar-trigged priming effect shifted from a positive (3.7 mg CO2–C kg−1 soil) to a negative state (−14.4 mg CO2–C kg−1 soil), and 450 °C biochar-induced negative priming effect increased by 31%; biochar's mineralization also decreased by 41–65%. Overall, after BDOC extraction, the net carbon balance in biochar-amended soils reduced by 7–8%. Furthermore, BDOC shifted the dominant priming mechanisms of biochar mainly by enhancing soil macro-aggregates while reducing sorptive protection for native soil organic carbon. Its extraction reduced the amount of soil macro-aggregates by 16–25% but enhanced the sorption affinity of native soil organic carbon by biochar by 68–122%. Additionally, after BDOC extraction, the microbial communities in biochar-amended soils contained more fungi and G+-bacteria. These findings proved that BDOC extraction appears a feasible strategy to enhance the short-period carbon sequestration potential of biochar.
科研通智能强力驱动
Strongly Powered by AbleSci AI