清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Machine Learning Model for Predicting Axillary Lymph Node Metastasis in Clinically Node Positive Breast Cancer Based on Peritumoral Ultrasound Radiomics and SHAP Feature Analysis

医学 乳腺癌 Lasso(编程语言) 淋巴结 放射科 超声波 逻辑回归 随机森林 腋窝 列线图 特征(语言学) 人工智能 肿瘤科 癌症 机器学习 内科学 计算机科学 语言学 万维网 哲学
作者
Si‐Rui Wang,Chun‐Li Cao,Tingting Du,Jin‐Li Wang,Jun Li,Wen‐Xiao Li,Ming Chen
出处
期刊:Journal of Ultrasound in Medicine [Wiley]
卷期号:43 (9): 1611-1625 被引量:7
标识
DOI:10.1002/jum.16483
摘要

Objective This study seeks to construct a machine learning model that merges clinical characteristics with ultrasound radiomic analysis—encompassing both the intratumoral and peritumoral—to predict the status of axillary lymph nodes in patients with early‐stage breast cancer. Methods The study employed retrospective methods, collecting clinical information, ultrasound data, and postoperative pathological results from 321 breast cancer patients (including 224 in the training group and 97 in the validation group). Through correlation analysis, univariate analysis, and Lasso regression analysis, independent risk factors related to axillary lymph node metastasis in breast cancer were identified from conventional ultrasound and immunohistochemical indicators, and a clinical feature model was constructed. Additionally, features were extracted from ultrasound images of the intratumoral and its 1–5 mm peritumoral to establish a radiomics feature formula. Furthermore, by combining clinical features and ultrasound radiomics features, six machine learning models (Logistic Regression, Decision Tree, Support Vector Machine, Extreme Gradient Boosting, Random Forest, and K‐Nearest Neighbors) were compared for diagnostic efficacy, and constructing a joint prediction model based on the optimal ML algorithm. The use of Shapley Additive Explanations (SHAP) enhanced the visualization and interpretability of the model during the diagnostic process. Results Among the 321 breast cancer patients, 121 had axillary lymph node metastasis, and 200 did not. The clinical feature model had an AUC of 0.779 and 0.777 in the training and validation groups, respectively. Radiomics model analysis showed that the model including the Intratumor +3 mm peritumor area had the best diagnostic performance, with AUCs of 0.847 and 0.844 in the training and validation groups, respectively. The joint prediction model based on the XGBoost algorithm reached AUCs of 0.917 and 0.905 in the training and validation groups, respectively. SHAP analysis indicated that the Rad Score had the highest weight in the prediction model, playing a significant role in predicting axillary lymph node metastasis in breast cancer. Conclusion The predictive model, which integrates clinical features and radiomic characteristics using the XGBoost algorithm, demonstrates significant diagnostic value for axillary lymph node metastasis in breast cancer. This model can provide significant references for preoperative surgical strategy selection and prognosis evaluation for breast cancer patients, helping to reduce postoperative complications and improve long‐term survival rates. Additionally, the utilization of SHAP enhancing the global and local interpretability of the model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
17秒前
chcmy完成签到 ,获得积分0
20秒前
凝天完成签到 ,获得积分10
40秒前
科目三应助科研通管家采纳,获得10
1分钟前
1分钟前
甜美的秋尽完成签到,获得积分10
1分钟前
雪山飞龙发布了新的文献求助30
2分钟前
雪山飞龙发布了新的文献求助10
2分钟前
幸运的姜姜完成签到 ,获得积分10
2分钟前
Orange应助科研通管家采纳,获得10
3分钟前
小马甲应助科研通管家采纳,获得30
5分钟前
Yini应助vpothello采纳,获得30
5分钟前
胡国伦完成签到 ,获得积分10
5分钟前
陈陈完成签到,获得积分10
5分钟前
合不着完成签到 ,获得积分10
5分钟前
脑洞疼应助笑点低的毛衣采纳,获得10
6分钟前
Ivy完成签到,获得积分10
6分钟前
Arthur完成签到 ,获得积分10
6分钟前
6分钟前
薛家泰完成签到 ,获得积分10
7分钟前
gszy1975发布了新的文献求助10
7分钟前
量子星尘发布了新的文献求助10
7分钟前
房天川完成签到 ,获得积分10
7分钟前
wangermazi完成签到,获得积分0
8分钟前
LINDENG2004完成签到 ,获得积分10
8分钟前
beihaik完成签到 ,获得积分10
8分钟前
研友_VZG7GZ应助科研通管家采纳,获得10
9分钟前
小丸子完成签到 ,获得积分0
9分钟前
披着羊皮的狼完成签到 ,获得积分10
9分钟前
无悔完成签到 ,获得积分10
9分钟前
星辰大海应助容若采纳,获得10
10分钟前
小丸子博士完成签到 ,获得积分10
10分钟前
章鱼小丸子完成签到 ,获得积分10
10分钟前
刘刘完成签到 ,获得积分10
10分钟前
领导范儿应助容若采纳,获得10
10分钟前
许多知识完成签到,获得积分10
11分钟前
科研通AI5应助容若采纳,获得10
11分钟前
发个15分的完成签到 ,获得积分10
11分钟前
雪山飞龙完成签到,获得积分10
12分钟前
呆呆的猕猴桃完成签到 ,获得积分10
12分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Rapid synthesis of subnanoscale high-entropy alloys with ultrahigh durability 666
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4889735
求助须知:如何正确求助?哪些是违规求助? 4173627
关于积分的说明 12952296
捐赠科研通 3935122
什么是DOI,文献DOI怎么找? 2159251
邀请新用户注册赠送积分活动 1177579
关于科研通互助平台的介绍 1082552