Machine Learning Model for Predicting Axillary Lymph Node Metastasis in Clinically Node Positive Breast Cancer Based on Peritumoral Ultrasound Radiomics and SHAP Feature Analysis

医学 乳腺癌 Lasso(编程语言) 淋巴结 放射科 超声波 逻辑回归 随机森林 腋窝 列线图 特征(语言学) 人工智能 肿瘤科 癌症 机器学习 内科学 计算机科学 语言学 哲学 万维网
作者
Si‐Rui Wang,Chun‐Li Cao,Tingting Du,Jin‐Li Wang,Jun Li,Wen‐Xiao Li,Ming Chen
出处
期刊:Journal of Ultrasound in Medicine [Wiley]
卷期号:43 (9): 1611-1625 被引量:1
标识
DOI:10.1002/jum.16483
摘要

Objective This study seeks to construct a machine learning model that merges clinical characteristics with ultrasound radiomic analysis—encompassing both the intratumoral and peritumoral—to predict the status of axillary lymph nodes in patients with early‐stage breast cancer. Methods The study employed retrospective methods, collecting clinical information, ultrasound data, and postoperative pathological results from 321 breast cancer patients (including 224 in the training group and 97 in the validation group). Through correlation analysis, univariate analysis, and Lasso regression analysis, independent risk factors related to axillary lymph node metastasis in breast cancer were identified from conventional ultrasound and immunohistochemical indicators, and a clinical feature model was constructed. Additionally, features were extracted from ultrasound images of the intratumoral and its 1–5 mm peritumoral to establish a radiomics feature formula. Furthermore, by combining clinical features and ultrasound radiomics features, six machine learning models (Logistic Regression, Decision Tree, Support Vector Machine, Extreme Gradient Boosting, Random Forest, and K‐Nearest Neighbors) were compared for diagnostic efficacy, and constructing a joint prediction model based on the optimal ML algorithm. The use of Shapley Additive Explanations (SHAP) enhanced the visualization and interpretability of the model during the diagnostic process. Results Among the 321 breast cancer patients, 121 had axillary lymph node metastasis, and 200 did not. The clinical feature model had an AUC of 0.779 and 0.777 in the training and validation groups, respectively. Radiomics model analysis showed that the model including the Intratumor +3 mm peritumor area had the best diagnostic performance, with AUCs of 0.847 and 0.844 in the training and validation groups, respectively. The joint prediction model based on the XGBoost algorithm reached AUCs of 0.917 and 0.905 in the training and validation groups, respectively. SHAP analysis indicated that the Rad Score had the highest weight in the prediction model, playing a significant role in predicting axillary lymph node metastasis in breast cancer. Conclusion The predictive model, which integrates clinical features and radiomic characteristics using the XGBoost algorithm, demonstrates significant diagnostic value for axillary lymph node metastasis in breast cancer. This model can provide significant references for preoperative surgical strategy selection and prognosis evaluation for breast cancer patients, helping to reduce postoperative complications and improve long‐term survival rates. Additionally, the utilization of SHAP enhancing the global and local interpretability of the model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大酋长完成签到,获得积分10
刚刚
快乐的一刀完成签到,获得积分10
1秒前
谦让成协完成签到,获得积分10
2秒前
wch完成签到,获得积分10
2秒前
在水一方应助听雨采纳,获得10
2秒前
4秒前
汉堡包应助快乐的一刀采纳,获得10
6秒前
Hello应助神勇初瑶采纳,获得10
6秒前
happyboy2008完成签到,获得积分10
6秒前
jukongka完成签到,获得积分0
10秒前
欢喜发卡完成签到 ,获得积分10
10秒前
12秒前
盈月完成签到,获得积分10
12秒前
小马甲应助2123121321321采纳,获得10
12秒前
13秒前
bei完成签到,获得积分10
13秒前
17秒前
皮夏寒发布了新的文献求助10
17秒前
bkagyin应助甜甜可甜了采纳,获得10
17秒前
听雨发布了新的文献求助10
18秒前
18秒前
19秒前
Jasper应助wch采纳,获得10
19秒前
科研通AI2S应助科研通管家采纳,获得10
19秒前
大模型应助科研通管家采纳,获得10
19秒前
星辰大海应助科研通管家采纳,获得10
19秒前
科研通AI2S应助科研通管家采纳,获得10
19秒前
小马甲应助科研通管家采纳,获得10
19秒前
orange9完成签到,获得积分10
20秒前
21秒前
快去睡觉发布了新的文献求助10
22秒前
顾矜应助wz采纳,获得10
23秒前
orange9发布了新的文献求助10
23秒前
24秒前
liuyiduo完成签到,获得积分10
24秒前
25秒前
Thi发布了新的文献求助20
25秒前
25秒前
26秒前
马克董发布了新的文献求助10
27秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148089
求助须知:如何正确求助?哪些是违规求助? 2799137
关于积分的说明 7833616
捐赠科研通 2456348
什么是DOI,文献DOI怎么找? 1307222
科研通“疑难数据库(出版商)”最低求助积分说明 628086
版权声明 601655