Machine Learning Model for Predicting Axillary Lymph Node Metastasis in Clinically Node Positive Breast Cancer Based on Peritumoral Ultrasound Radiomics and SHAP Feature Analysis

医学 乳腺癌 Lasso(编程语言) 淋巴结 放射科 超声波 逻辑回归 随机森林 腋窝 列线图 特征(语言学) 人工智能 肿瘤科 癌症 机器学习 内科学 计算机科学 语言学 万维网 哲学
作者
Si‐Rui Wang,Chun‐Li Cao,Tingting Du,Jin‐Li Wang,Jun Li,Wen‐Xiao Li,Ming Chen
出处
期刊:Journal of Ultrasound in Medicine [Wiley]
卷期号:43 (9): 1611-1625 被引量:5
标识
DOI:10.1002/jum.16483
摘要

Objective This study seeks to construct a machine learning model that merges clinical characteristics with ultrasound radiomic analysis—encompassing both the intratumoral and peritumoral—to predict the status of axillary lymph nodes in patients with early‐stage breast cancer. Methods The study employed retrospective methods, collecting clinical information, ultrasound data, and postoperative pathological results from 321 breast cancer patients (including 224 in the training group and 97 in the validation group). Through correlation analysis, univariate analysis, and Lasso regression analysis, independent risk factors related to axillary lymph node metastasis in breast cancer were identified from conventional ultrasound and immunohistochemical indicators, and a clinical feature model was constructed. Additionally, features were extracted from ultrasound images of the intratumoral and its 1–5 mm peritumoral to establish a radiomics feature formula. Furthermore, by combining clinical features and ultrasound radiomics features, six machine learning models (Logistic Regression, Decision Tree, Support Vector Machine, Extreme Gradient Boosting, Random Forest, and K‐Nearest Neighbors) were compared for diagnostic efficacy, and constructing a joint prediction model based on the optimal ML algorithm. The use of Shapley Additive Explanations (SHAP) enhanced the visualization and interpretability of the model during the diagnostic process. Results Among the 321 breast cancer patients, 121 had axillary lymph node metastasis, and 200 did not. The clinical feature model had an AUC of 0.779 and 0.777 in the training and validation groups, respectively. Radiomics model analysis showed that the model including the Intratumor +3 mm peritumor area had the best diagnostic performance, with AUCs of 0.847 and 0.844 in the training and validation groups, respectively. The joint prediction model based on the XGBoost algorithm reached AUCs of 0.917 and 0.905 in the training and validation groups, respectively. SHAP analysis indicated that the Rad Score had the highest weight in the prediction model, playing a significant role in predicting axillary lymph node metastasis in breast cancer. Conclusion The predictive model, which integrates clinical features and radiomic characteristics using the XGBoost algorithm, demonstrates significant diagnostic value for axillary lymph node metastasis in breast cancer. This model can provide significant references for preoperative surgical strategy selection and prognosis evaluation for breast cancer patients, helping to reduce postoperative complications and improve long‐term survival rates. Additionally, the utilization of SHAP enhancing the global and local interpretability of the model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助无奈青枫采纳,获得10
1秒前
1秒前
ramon发布了新的文献求助10
2秒前
2秒前
2秒前
Akim应助西子阳采纳,获得10
2秒前
JamesPei应助abtx314采纳,获得10
3秒前
nene发布了新的文献求助10
5秒前
金金完成签到,获得积分10
5秒前
Hello应助ahui采纳,获得10
5秒前
墙头的草完成签到,获得积分20
5秒前
标致电源完成签到,获得积分10
6秒前
受伤问凝完成签到 ,获得积分10
6秒前
123完成签到,获得积分10
6秒前
缓慢的可乐完成签到,获得积分10
7秒前
7秒前
王琨程发布了新的文献求助10
7秒前
思源应助西子阳采纳,获得10
7秒前
8秒前
8秒前
BK_发布了新的文献求助10
9秒前
honey发布了新的文献求助10
9秒前
Co完成签到 ,获得积分10
12秒前
柳娅茹发布了新的文献求助10
12秒前
abcdefg完成签到,获得积分10
12秒前
斯文败类应助km198964650采纳,获得10
13秒前
852应助西子阳采纳,获得10
14秒前
猪猪hero应助小仙女212采纳,获得10
14秒前
奥特超曼应助小仙女212采纳,获得10
14秒前
mariawang发布了新的文献求助20
14秒前
慕青应助是我本人采纳,获得10
14秒前
18秒前
CTtoF发布了新的文献求助10
20秒前
花小北完成签到 ,获得积分10
21秒前
ioio发布了新的文献求助10
21秒前
21秒前
22秒前
天天快乐应助简单小熊猫采纳,获得10
22秒前
天天快乐应助温柔沛槐采纳,获得10
23秒前
23秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998421
求助须知:如何正确求助?哪些是违规求助? 3537865
关于积分的说明 11272824
捐赠科研通 3276939
什么是DOI,文献DOI怎么找? 1807205
邀请新用户注册赠送积分活动 883818
科研通“疑难数据库(出版商)”最低求助积分说明 810014