亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine Learning Model for Predicting Axillary Lymph Node Metastasis in Clinically Node Positive Breast Cancer Based on Peritumoral Ultrasound Radiomics and SHAP Feature Analysis

医学 乳腺癌 Lasso(编程语言) 淋巴结 放射科 超声波 逻辑回归 随机森林 腋窝 列线图 特征(语言学) 人工智能 肿瘤科 癌症 机器学习 内科学 计算机科学 语言学 哲学 万维网
作者
Si‐Rui Wang,Chun‐Li Cao,Tingting Du,Jin‐Li Wang,Jun Li,Wen‐Xiao Li,Ming Chen
出处
期刊:Journal of Ultrasound in Medicine [Wiley]
卷期号:43 (9): 1611-1625 被引量:8
标识
DOI:10.1002/jum.16483
摘要

Objective This study seeks to construct a machine learning model that merges clinical characteristics with ultrasound radiomic analysis—encompassing both the intratumoral and peritumoral—to predict the status of axillary lymph nodes in patients with early‐stage breast cancer. Methods The study employed retrospective methods, collecting clinical information, ultrasound data, and postoperative pathological results from 321 breast cancer patients (including 224 in the training group and 97 in the validation group). Through correlation analysis, univariate analysis, and Lasso regression analysis, independent risk factors related to axillary lymph node metastasis in breast cancer were identified from conventional ultrasound and immunohistochemical indicators, and a clinical feature model was constructed. Additionally, features were extracted from ultrasound images of the intratumoral and its 1–5 mm peritumoral to establish a radiomics feature formula. Furthermore, by combining clinical features and ultrasound radiomics features, six machine learning models (Logistic Regression, Decision Tree, Support Vector Machine, Extreme Gradient Boosting, Random Forest, and K‐Nearest Neighbors) were compared for diagnostic efficacy, and constructing a joint prediction model based on the optimal ML algorithm. The use of Shapley Additive Explanations (SHAP) enhanced the visualization and interpretability of the model during the diagnostic process. Results Among the 321 breast cancer patients, 121 had axillary lymph node metastasis, and 200 did not. The clinical feature model had an AUC of 0.779 and 0.777 in the training and validation groups, respectively. Radiomics model analysis showed that the model including the Intratumor +3 mm peritumor area had the best diagnostic performance, with AUCs of 0.847 and 0.844 in the training and validation groups, respectively. The joint prediction model based on the XGBoost algorithm reached AUCs of 0.917 and 0.905 in the training and validation groups, respectively. SHAP analysis indicated that the Rad Score had the highest weight in the prediction model, playing a significant role in predicting axillary lymph node metastasis in breast cancer. Conclusion The predictive model, which integrates clinical features and radiomic characteristics using the XGBoost algorithm, demonstrates significant diagnostic value for axillary lymph node metastasis in breast cancer. This model can provide significant references for preoperative surgical strategy selection and prognosis evaluation for breast cancer patients, helping to reduce postoperative complications and improve long‐term survival rates. Additionally, the utilization of SHAP enhancing the global and local interpretability of the model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
16秒前
Rebeccaiscute完成签到 ,获得积分10
42秒前
隐形曼青应助meng采纳,获得10
53秒前
1分钟前
1分钟前
meng发布了新的文献求助10
1分钟前
meng完成签到,获得积分20
1分钟前
秋日思语发布了新的文献求助10
1分钟前
科研通AI2S应助ST采纳,获得10
1分钟前
双手外科结完成签到,获得积分10
2分钟前
米奇妙妙屋完成签到,获得积分10
2分钟前
2分钟前
3分钟前
ST发布了新的文献求助10
3分钟前
嘻嘻完成签到,获得积分10
4分钟前
休斯顿完成签到,获得积分10
4分钟前
风轻轻完成签到 ,获得积分10
5分钟前
雾见春完成签到 ,获得积分10
5分钟前
q792309106发布了新的文献求助10
5分钟前
冷cool完成签到 ,获得积分10
6分钟前
GGBond完成签到 ,获得积分10
7分钟前
秋日思语发布了新的文献求助10
7分钟前
晨晨完成签到 ,获得积分10
7分钟前
乐乐应助q792309106采纳,获得10
8分钟前
8分钟前
ZLL发布了新的文献求助10
8分钟前
ZLL发布了新的文献求助10
9分钟前
wlscj完成签到 ,获得积分10
9分钟前
国色不染尘完成签到,获得积分10
10分钟前
cmf完成签到 ,获得积分10
10分钟前
科研通AI6应助秋日思语采纳,获得10
10分钟前
zwb完成签到 ,获得积分10
11分钟前
lulu828完成签到,获得积分10
11分钟前
计划完成签到,获得积分10
11分钟前
12分钟前
q792309106发布了新的文献求助10
12分钟前
56发布了新的文献求助10
12分钟前
Lucas应助q792309106采纳,获得10
12分钟前
情怀应助ST采纳,获得10
13分钟前
xingsixs发布了新的文献求助10
13分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5211270
求助须知:如何正确求助?哪些是违规求助? 4387787
关于积分的说明 13663159
捐赠科研通 4247890
什么是DOI,文献DOI怎么找? 2330557
邀请新用户注册赠送积分活动 1328329
关于科研通互助平台的介绍 1281238