相思
耐盐性
抗氧化剂
根瘤菌
盐度
酶
机制(生物学)
盐(化学)
生物
植物
化学
生物化学
生态学
基因
哲学
认识论
物理化学
作者
Mohammad Shahid,Mohammad Altaf,Mohammad Danish
出处
期刊:Chemosphere
[Elsevier]
日期:2024-07-01
卷期号:360: 142431-142431
被引量:1
标识
DOI:10.1016/j.chemosphere.2024.142431
摘要
Globally, agricultural productivity is facing a serious problem due to soil salinity which often causes osmotic, ionic, and redox imbalances in plants. Applying halotolerant rhizobacterial inoculants having multifarious growth-regulating traits is thought to be an effective and advantageous approach to overcome salinity stress. Here, salt-tolerant (tolerating 300 mM NaCl), exopolysaccharide (EPS) producing Rhizobium azibense SR-26 (accession no. MG063740) was assessed for salt alleviation potential by inoculating Phaseolus vulgaris (L.) plants raised under varying NaCl regimes. The metabolically active cells of strain SR-26 produced a significant amount of phytohormones (indole-3-acetic acid, gibberellic acid, and cytokinin), ACC deaminase, ammonia, and siderophore under salt stress. Increasing NaCl concentration variably affected the EPS produced by SR-26. The P-solubilization activity of the SR-26 strain was positively impacted by NaCl, as demonstrated by OD shift in NaCl-treated/untreated NBRIP medium. The detrimental effect of NaCl on plants was lowered by inoculation of halotolerant strain SR-26. Following soil inoculation, R. azibense significantly (p ≤ 0.05) enhanced seed germination (10%), root (19%) shoot (23%) biomass, leaf area (18%), total chlorophyll (21%), and carotenoid content (32%) of P. vulgaris raised in soil added with 40 mM NaCl concentration. Furthermore, strain SR-26 modulated the relative leaf water content (RLWC), proline, total soluble protein (TSP), and sugar (TSS) of salt-exposed plants. Moreover, R. azibense inoculation lowered the concentrations of oxidative stress biomarkers; MDA (29%), H
科研通智能强力驱动
Strongly Powered by AbleSci AI