Segmentation and quantitative analysis of optical coherence tomography (OCT) images of laser burned skin based on deep learning

光学相干层析成像 分割 人工智能 医学 眼科 计算机科学
作者
Jingyuan Wu,Qiong Ma,Xun Zhou,Wei Yu,Zhibo Liu,Hongxiang Kang
出处
期刊:Biomedical Physics & Engineering Express [IOP Publishing]
卷期号:10 (4): 045026-045026
标识
DOI:10.1088/2057-1976/ad488f
摘要

Evaluation of skin recovery is an important step in the treatment of burns. However, conventional methods only observe the surface of the skin and cannot quantify the injury volume. Optical coherence tomography (OCT) is a non-invasive, non-contact, real-time technique. Swept source OCT uses near infrared light and analyzes the intensity of light echo at different depths to generate images from optical interference signals. To quantify the dynamic recovery of skin burns over time, laser induced skin burns in mice were evaluated using deep learning of Swept source OCT images. A laser-induced mouse skin thermal injury model was established in thirty Kunming mice, and OCT images of normal and burned areas of mouse skin were acquired at day 0, day 1, day 3, day 7, and day 14 after laser irradiation. This resulted in 7000 normal and 1400 burn B-scan images which were divided into training, validation, and test sets at 8:1.5:0.5 ratio for the normal data and 8:1:1 for the burn data. Normal images were manually annotated, and the deep learning U-Net model (verified with PSPNe and HRNet models) was used to segment the skin into three layers: the dermal epidermal layer, subcutaneous fat layer, and muscle layer. For the burn images, the models were trained to segment just the damaged area. Three-dimensional reconstruction technology was then used to reconstruct the damaged tissue and calculate the damaged tissue volume. The average IoU value and f-score of the normal tissue layer U-Net segmentation model were 0.876 and 0.934 respectively. The IoU value of the burn area segmentation model reached 0.907 and f-score value reached 0.951. Compared with manual labeling, the U-Net model was faster with higher accuracy for skin stratification. OCT and U-Net segmentation can provide rapid and accurate analysis of tissue changes and clinical guidance in the treatment of burns.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
榴莲完成签到,获得积分10
3秒前
孤独曲奇发布了新的文献求助10
4秒前
72323完成签到,获得积分10
4秒前
合适的小馒头完成签到,获得积分10
7秒前
7秒前
胡洋发布了新的文献求助50
8秒前
冇_完成签到 ,获得积分10
8秒前
hh发布了新的文献求助10
8秒前
111完成签到,获得积分10
9秒前
10秒前
hotwater发布了新的文献求助10
10秒前
科目三应助腾飞采纳,获得10
11秒前
weifengzhong完成签到,获得积分10
11秒前
123发布了新的文献求助10
13秒前
13秒前
展锋发布了新的文献求助10
15秒前
苏远山爱吃西红柿完成签到,获得积分10
15秒前
科研通AI2S应助木木采纳,获得10
15秒前
小蘑菇应助哈哈哈采纳,获得10
16秒前
silence完成签到 ,获得积分10
16秒前
slsdy发布了新的文献求助10
16秒前
Criminology34应助正常采纳,获得10
17秒前
Hey发布了新的文献求助10
18秒前
hhhh完成签到,获得积分10
19秒前
dddyrrrrr完成签到 ,获得积分10
19秒前
tt发布了新的文献求助10
20秒前
L_Gary完成签到 ,获得积分10
20秒前
20秒前
20秒前
Beton_X完成签到,获得积分20
20秒前
20秒前
正常完成签到,获得积分10
21秒前
21秒前
JamesPei应助不爱吃苹果采纳,获得10
22秒前
轻松黄豆完成签到,获得积分10
22秒前
22秒前
田様应助Zz采纳,获得10
23秒前
呆鸥完成签到,获得积分10
24秒前
YH发布了新的文献求助10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5295056
求助须知:如何正确求助?哪些是违规求助? 4444656
关于积分的说明 13834273
捐赠科研通 4328923
什么是DOI,文献DOI怎么找? 2376463
邀请新用户注册赠送积分活动 1371739
关于科研通互助平台的介绍 1336930