Segmentation and quantitative analysis of optical coherence tomography (OCT) images of laser burned skin based on deep learning

光学相干层析成像 分割 人工智能 医学 眼科 计算机科学
作者
Jingyuan Wu,Qiong Ma,Xun Zhou,Wei Yu,Zhibo Liu,Hongxiang Kang
出处
期刊:Biomedical Physics & Engineering Express [IOP Publishing]
卷期号:10 (4): 045026-045026
标识
DOI:10.1088/2057-1976/ad488f
摘要

Evaluation of skin recovery is an important step in the treatment of burns. However, conventional methods only observe the surface of the skin and cannot quantify the injury volume. Optical coherence tomography (OCT) is a non-invasive, non-contact, real-time technique. Swept source OCT uses near infrared light and analyzes the intensity of light echo at different depths to generate images from optical interference signals. To quantify the dynamic recovery of skin burns over time, laser induced skin burns in mice were evaluated using deep learning of Swept source OCT images. A laser-induced mouse skin thermal injury model was established in thirty Kunming mice, and OCT images of normal and burned areas of mouse skin were acquired at day 0, day 1, day 3, day 7, and day 14 after laser irradiation. This resulted in 7000 normal and 1400 burn B-scan images which were divided into training, validation, and test sets at 8:1.5:0.5 ratio for the normal data and 8:1:1 for the burn data. Normal images were manually annotated, and the deep learning U-Net model (verified with PSPNe and HRNet models) was used to segment the skin into three layers: the dermal epidermal layer, subcutaneous fat layer, and muscle layer. For the burn images, the models were trained to segment just the damaged area. Three-dimensional reconstruction technology was then used to reconstruct the damaged tissue and calculate the damaged tissue volume. The average IoU value and f-score of the normal tissue layer U-Net segmentation model were 0.876 and 0.934 respectively. The IoU value of the burn area segmentation model reached 0.907 and f-score value reached 0.951. Compared with manual labeling, the U-Net model was faster with higher accuracy for skin stratification. OCT and U-Net segmentation can provide rapid and accurate analysis of tissue changes and clinical guidance in the treatment of burns.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
奶黄包发布了新的文献求助10
刚刚
Rsharply发布了新的文献求助10
刚刚
1秒前
sun完成签到,获得积分10
1秒前
2秒前
风中的断缘完成签到,获得积分10
2秒前
自由的筝发布了新的文献求助10
2秒前
精明之瑶发布了新的文献求助30
3秒前
3秒前
4秒前
5秒前
5秒前
5秒前
嘻嘻完成签到,获得积分10
6秒前
冯哒哒发布了新的文献求助10
6秒前
7秒前
7秒前
rongyiming发布了新的文献求助30
7秒前
Polling完成签到,获得积分10
7秒前
今后应助Dale采纳,获得10
7秒前
酷波er应助ZM采纳,获得10
7秒前
任性凤凰发布了新的文献求助10
8秒前
ding应助111采纳,获得10
8秒前
你好发布了新的文献求助10
8秒前
zjq发布了新的文献求助10
8秒前
yywd发布了新的文献求助10
8秒前
XiaoXiao完成签到,获得积分10
9秒前
9秒前
笑傲江湖完成签到,获得积分10
10秒前
小汉子发布了新的文献求助10
10秒前
典雅大白菜真实的钥匙完成签到,获得积分10
11秒前
Djnsbj发布了新的文献求助10
12秒前
12秒前
小蘑菇应助王威采纳,获得10
13秒前
所所应助跑赢兔子采纳,获得10
13秒前
14秒前
lu完成签到,获得积分10
14秒前
15秒前
陌回应助255采纳,获得10
15秒前
QLLW发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Linear and Nonlinear Functional Analysis with Applications, Second Edition 388
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5577111
求助须知:如何正确求助?哪些是违规求助? 4662375
关于积分的说明 14741491
捐赠科研通 4603039
什么是DOI,文献DOI怎么找? 2526066
邀请新用户注册赠送积分活动 1495999
关于科研通互助平台的介绍 1465483