Segmentation and quantitative analysis of optical coherence tomography (OCT) images of laser burned skin based on deep learning

光学相干层析成像 分割 人工智能 医学 眼科 计算机科学
作者
Jingyuan Wu,Qiong Ma,Xun Zhou,Wei Yu,Zhibo Liu,Hongxiang Kang
出处
期刊:Biomedical Physics & Engineering Express [IOP Publishing]
卷期号:10 (4): 045026-045026
标识
DOI:10.1088/2057-1976/ad488f
摘要

Evaluation of skin recovery is an important step in the treatment of burns. However, conventional methods only observe the surface of the skin and cannot quantify the injury volume. Optical coherence tomography (OCT) is a non-invasive, non-contact, real-time technique. Swept source OCT uses near infrared light and analyzes the intensity of light echo at different depths to generate images from optical interference signals. To quantify the dynamic recovery of skin burns over time, laser induced skin burns in mice were evaluated using deep learning of Swept source OCT images. A laser-induced mouse skin thermal injury model was established in thirty Kunming mice, and OCT images of normal and burned areas of mouse skin were acquired at day 0, day 1, day 3, day 7, and day 14 after laser irradiation. This resulted in 7000 normal and 1400 burn B-scan images which were divided into training, validation, and test sets at 8:1.5:0.5 ratio for the normal data and 8:1:1 for the burn data. Normal images were manually annotated, and the deep learning U-Net model (verified with PSPNe and HRNet models) was used to segment the skin into three layers: the dermal epidermal layer, subcutaneous fat layer, and muscle layer. For the burn images, the models were trained to segment just the damaged area. Three-dimensional reconstruction technology was then used to reconstruct the damaged tissue and calculate the damaged tissue volume. The average IoU value and f-score of the normal tissue layer U-Net segmentation model were 0.876 and 0.934 respectively. The IoU value of the burn area segmentation model reached 0.907 and f-score value reached 0.951. Compared with manual labeling, the U-Net model was faster with higher accuracy for skin stratification. OCT and U-Net segmentation can provide rapid and accurate analysis of tissue changes and clinical guidance in the treatment of burns.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
炙热的雨双完成签到 ,获得积分10
刚刚
研友_VZG7GZ应助liuzengzhang666采纳,获得10
刚刚
1秒前
1秒前
好学的猪完成签到,获得积分10
2秒前
江江小菜鸡完成签到,获得积分10
2秒前
momi完成签到 ,获得积分10
2秒前
梁婷完成签到,获得积分10
2秒前
和谐诗双完成签到 ,获得积分10
3秒前
3秒前
Aman完成签到,获得积分10
3秒前
淡淡猕猴桃完成签到,获得积分10
3秒前
领导范儿应助Pan采纳,获得10
3秒前
狂野飞柏完成签到 ,获得积分10
5秒前
忧伤的八宝粥完成签到,获得积分0
5秒前
梁婷发布了新的文献求助10
5秒前
qweerrtt完成签到,获得积分10
5秒前
宝宝发布了新的文献求助10
6秒前
乐观文龙发布了新的文献求助10
6秒前
7秒前
Li发布了新的文献求助10
7秒前
CAOHOU应助言无间采纳,获得10
8秒前
9秒前
栖木木完成签到 ,获得积分10
11秒前
11秒前
xiao完成签到 ,获得积分10
12秒前
led完成签到,获得积分10
12秒前
萧水白发布了新的文献求助100
13秒前
西瓜投手完成签到,获得积分10
13秒前
顾远完成签到,获得积分10
14秒前
尔沁发布了新的文献求助10
14秒前
奔跑的小熊完成签到 ,获得积分10
15秒前
FashionBoy应助梁婷采纳,获得10
15秒前
15秒前
15秒前
虚幻元风完成签到 ,获得积分10
16秒前
Pan发布了新的文献求助10
16秒前
16秒前
琴楼完成签到,获得积分10
17秒前
白水完成签到,获得积分10
17秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965897
求助须知:如何正确求助?哪些是违规求助? 3511264
关于积分的说明 11157003
捐赠科研通 3245841
什么是DOI,文献DOI怎么找? 1793159
邀请新用户注册赠送积分活动 874230
科研通“疑难数据库(出版商)”最低求助积分说明 804278