Segmentation and quantitative analysis of optical coherence tomography (OCT) images of laser burned skin based on deep learning

光学相干层析成像 分割 人工智能 医学 眼科 计算机科学
作者
Jingyuan Wu,Qiong Ma,Xun Zhou,Wei Yu,Zhibo Liu,Hongxiang Kang
出处
期刊:Biomedical Physics & Engineering Express [IOP Publishing]
卷期号:10 (4): 045026-045026
标识
DOI:10.1088/2057-1976/ad488f
摘要

Evaluation of skin recovery is an important step in the treatment of burns. However, conventional methods only observe the surface of the skin and cannot quantify the injury volume. Optical coherence tomography (OCT) is a non-invasive, non-contact, real-time technique. Swept source OCT uses near infrared light and analyzes the intensity of light echo at different depths to generate images from optical interference signals. To quantify the dynamic recovery of skin burns over time, laser induced skin burns in mice were evaluated using deep learning of Swept source OCT images. A laser-induced mouse skin thermal injury model was established in thirty Kunming mice, and OCT images of normal and burned areas of mouse skin were acquired at day 0, day 1, day 3, day 7, and day 14 after laser irradiation. This resulted in 7000 normal and 1400 burn B-scan images which were divided into training, validation, and test sets at 8:1.5:0.5 ratio for the normal data and 8:1:1 for the burn data. Normal images were manually annotated, and the deep learning U-Net model (verified with PSPNe and HRNet models) was used to segment the skin into three layers: the dermal epidermal layer, subcutaneous fat layer, and muscle layer. For the burn images, the models were trained to segment just the damaged area. Three-dimensional reconstruction technology was then used to reconstruct the damaged tissue and calculate the damaged tissue volume. The average IoU value and f-score of the normal tissue layer U-Net segmentation model were 0.876 and 0.934 respectively. The IoU value of the burn area segmentation model reached 0.907 and f-score value reached 0.951. Compared with manual labeling, the U-Net model was faster with higher accuracy for skin stratification. OCT and U-Net segmentation can provide rapid and accurate analysis of tissue changes and clinical guidance in the treatment of burns.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
TvT发布了新的文献求助10
刚刚
独特鸽子发布了新的文献求助10
刚刚
chuzihang完成签到 ,获得积分10
刚刚
NexusExplorer应助舒服的觅夏采纳,获得10
1秒前
友好的缘分完成签到,获得积分10
2秒前
慕青应助小申采纳,获得10
3秒前
赛因斯完成签到,获得积分10
3秒前
4秒前
Loik发布了新的文献求助10
5秒前
科研通AI2S应助独特鸽子采纳,获得10
8秒前
9秒前
xiao发布了新的文献求助100
9秒前
Owen应助zyy采纳,获得10
10秒前
10秒前
荷月初六完成签到,获得积分10
11秒前
荷月初六发布了新的文献求助20
14秒前
六月初八夜完成签到,获得积分10
15秒前
ll发布了新的文献求助10
15秒前
量子星尘发布了新的文献求助10
15秒前
劳恩特应助非而者厚采纳,获得30
16秒前
Li发布了新的文献求助10
16秒前
雪落完成签到,获得积分10
16秒前
17秒前
17秒前
22秒前
22秒前
24秒前
Li完成签到,获得积分10
25秒前
华仔应助悠悠采纳,获得10
25秒前
www完成签到,获得积分10
25秒前
yuzhuoWng发布了新的文献求助10
26秒前
nylon发布了新的文献求助10
26秒前
26秒前
san完成签到,获得积分10
28秒前
29秒前
29秒前
欢呼的初彤完成签到 ,获得积分10
30秒前
30秒前
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Alloy Phase Diagrams 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5419479
求助须知:如何正确求助?哪些是违规求助? 4534726
关于积分的说明 14146477
捐赠科研通 4451326
什么是DOI,文献DOI怎么找? 2441717
邀请新用户注册赠送积分活动 1433274
关于科研通互助平台的介绍 1410587