Segmentation and quantitative analysis of optical coherence tomography (OCT) images of laser burned skin based on deep learning

光学相干层析成像 分割 人工智能 医学 眼科 计算机科学
作者
Jingyuan Wu,Qiong Ma,Xun Zhou,Wei Yu,Zhibo Liu,Hongxiang Kang
出处
期刊:Biomedical Physics & Engineering Express [IOP Publishing]
卷期号:10 (4): 045026-045026
标识
DOI:10.1088/2057-1976/ad488f
摘要

Evaluation of skin recovery is an important step in the treatment of burns. However, conventional methods only observe the surface of the skin and cannot quantify the injury volume. Optical coherence tomography (OCT) is a non-invasive, non-contact, real-time technique. Swept source OCT uses near infrared light and analyzes the intensity of light echo at different depths to generate images from optical interference signals. To quantify the dynamic recovery of skin burns over time, laser induced skin burns in mice were evaluated using deep learning of Swept source OCT images. A laser-induced mouse skin thermal injury model was established in thirty Kunming mice, and OCT images of normal and burned areas of mouse skin were acquired at day 0, day 1, day 3, day 7, and day 14 after laser irradiation. This resulted in 7000 normal and 1400 burn B-scan images which were divided into training, validation, and test sets at 8:1.5:0.5 ratio for the normal data and 8:1:1 for the burn data. Normal images were manually annotated, and the deep learning U-Net model (verified with PSPNe and HRNet models) was used to segment the skin into three layers: the dermal epidermal layer, subcutaneous fat layer, and muscle layer. For the burn images, the models were trained to segment just the damaged area. Three-dimensional reconstruction technology was then used to reconstruct the damaged tissue and calculate the damaged tissue volume. The average IoU value and f-score of the normal tissue layer U-Net segmentation model were 0.876 and 0.934 respectively. The IoU value of the burn area segmentation model reached 0.907 and f-score value reached 0.951. Compared with manual labeling, the U-Net model was faster with higher accuracy for skin stratification. OCT and U-Net segmentation can provide rapid and accurate analysis of tissue changes and clinical guidance in the treatment of burns.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
4秒前
4秒前
甜美的鸡翅完成签到 ,获得积分10
4秒前
6秒前
8秒前
8秒前
空白发布了新的文献求助10
8秒前
冷酷剑封发布了新的文献求助10
8秒前
DK发布了新的文献求助10
10秒前
小谷发布了新的文献求助10
12秒前
bbj发布了新的文献求助10
14秒前
伊一完成签到,获得积分10
14秒前
CipherSage应助DK采纳,获得10
16秒前
BBL完成签到 ,获得积分10
16秒前
搜集达人应助善良的冷梅采纳,获得10
19秒前
小谷完成签到,获得积分20
20秒前
Tao完成签到,获得积分20
20秒前
28秒前
29秒前
ygr应助look采纳,获得50
30秒前
coconut完成签到,获得积分10
30秒前
31秒前
kepler完成签到 ,获得积分20
32秒前
叙温雨发布了新的文献求助10
32秒前
Tao发布了新的文献求助10
35秒前
37秒前
大聪明完成签到,获得积分10
38秒前
David发布了新的文献求助10
38秒前
星河长明完成签到,获得积分10
38秒前
40秒前
40秒前
Mike完成签到,获得积分10
42秒前
42秒前
GYC完成签到 ,获得积分10
44秒前
45秒前
神奇海螺发布了新的文献求助10
45秒前
英姑应助老白采纳,获得30
45秒前
45秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149266
求助须知:如何正确求助?哪些是违规求助? 2800354
关于积分的说明 7839707
捐赠科研通 2457979
什么是DOI,文献DOI怎么找? 1308158
科研通“疑难数据库(出版商)”最低求助积分说明 628456
版权声明 601706