已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Segmentation and quantitative analysis of optical coherence tomography (OCT) images of laser burned skin based on deep learning

光学相干层析成像 分割 人工智能 医学 眼科 计算机科学
作者
Jingyuan Wu,Qiong Ma,Xun Zhou,Wei Yu,Zhibo Liu,Hongxiang Kang
出处
期刊:Biomedical Physics & Engineering Express [IOP Publishing]
卷期号:10 (4): 045026-045026
标识
DOI:10.1088/2057-1976/ad488f
摘要

Evaluation of skin recovery is an important step in the treatment of burns. However, conventional methods only observe the surface of the skin and cannot quantify the injury volume. Optical coherence tomography (OCT) is a non-invasive, non-contact, real-time technique. Swept source OCT uses near infrared light and analyzes the intensity of light echo at different depths to generate images from optical interference signals. To quantify the dynamic recovery of skin burns over time, laser induced skin burns in mice were evaluated using deep learning of Swept source OCT images. A laser-induced mouse skin thermal injury model was established in thirty Kunming mice, and OCT images of normal and burned areas of mouse skin were acquired at day 0, day 1, day 3, day 7, and day 14 after laser irradiation. This resulted in 7000 normal and 1400 burn B-scan images which were divided into training, validation, and test sets at 8:1.5:0.5 ratio for the normal data and 8:1:1 for the burn data. Normal images were manually annotated, and the deep learning U-Net model (verified with PSPNe and HRNet models) was used to segment the skin into three layers: the dermal epidermal layer, subcutaneous fat layer, and muscle layer. For the burn images, the models were trained to segment just the damaged area. Three-dimensional reconstruction technology was then used to reconstruct the damaged tissue and calculate the damaged tissue volume. The average IoU value and f-score of the normal tissue layer U-Net segmentation model were 0.876 and 0.934 respectively. The IoU value of the burn area segmentation model reached 0.907 and f-score value reached 0.951. Compared with manual labeling, the U-Net model was faster with higher accuracy for skin stratification. OCT and U-Net segmentation can provide rapid and accurate analysis of tissue changes and clinical guidance in the treatment of burns.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
沉静的万天完成签到 ,获得积分10
刚刚
小小发布了新的文献求助10
刚刚
1秒前
Leffzeng发布了新的文献求助10
2秒前
5秒前
长安完成签到 ,获得积分10
5秒前
北极星发布了新的文献求助30
6秒前
李爱国应助Danielwill采纳,获得10
7秒前
CipherSage应助xiyang采纳,获得10
8秒前
9秒前
10秒前
11秒前
难过的念桃完成签到 ,获得积分10
13秒前
好久不见完成签到 ,获得积分10
14秒前
欢呼败发布了新的文献求助10
15秒前
jjyy发布了新的文献求助10
15秒前
隐形曼青应助XIEQ采纳,获得10
15秒前
11122完成签到,获得积分10
15秒前
15秒前
Jasper应助大气的月饼采纳,获得10
15秒前
xkai发布了新的文献求助10
16秒前
fsznc1完成签到 ,获得积分0
17秒前
一部船完成签到 ,获得积分10
18秒前
木子发布了新的文献求助10
20秒前
善学以致用应助喜悦采纳,获得10
22秒前
小二完成签到 ,获得积分10
22秒前
22秒前
小蘑菇应助kkk采纳,获得10
22秒前
23秒前
yz发布了新的文献求助10
24秒前
李健的小迷弟应助北极星采纳,获得30
24秒前
ZJR完成签到 ,获得积分10
24秒前
木子完成签到,获得积分10
26秒前
Lll完成签到 ,获得积分20
27秒前
27小天使发布了新的文献求助30
27秒前
27秒前
华仔应助MissZhang采纳,获得10
27秒前
29秒前
ok完成签到 ,获得积分10
30秒前
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 640
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573086
求助须知:如何正确求助?哪些是违规求助? 4659218
关于积分的说明 14724003
捐赠科研通 4599058
什么是DOI,文献DOI怎么找? 2524103
邀请新用户注册赠送积分活动 1494642
关于科研通互助平台的介绍 1464679