Semantic Segmentation with Attention Dense U-Net for Lung Extraction from X-ray Images

深度学习 人工智能 水准点(测量) 计算机科学 像素 分割 光学(聚焦) 特征提取 模式识别(心理学) 机器学习 地图学 光学 物理 地理
作者
Akib Al Mahmud Auvy,Rafiatul Zannah,Mahbub-E-Elahi,Shezhan Sharif,Washik Al Mahmud,Jannatun Noor
标识
DOI:10.1109/iceeict62016.2024.10534437
摘要

Deep learning and digital image processing are crucial in medical imaging research. Lung segmentation is particularly challenging, demanding accurate differentiation of complex structures, sophisticated algorithms, and deep learning models for reliable results. In our research, We used the Shen-zhen chest X-ray dataset, comprising 566 frontal chest X-rays focused on pulmonary tuberculosis. This dataset, compiled by the Guangdong Medical College and Shenzhen No. 3 People's Hospital, was released by the United States National Library of Medicine. Images, captured using a Philips DR Digital Diagnostic system, were resized from $3000 \times 3000$ pixels to $512 \times 512$ pixels for computer-aided diagnosis research. We initially used the Attention Dense U-Net to extract lungs from chest X-rays, leveraging attention mechanisms to focus on relevant features and dense blocks to improve feature reuse. Our goal is to assess its performance for chest X-ray segmentation, comparing it with other deep learning models due to limited research in this area. So, the model is compared with four other variants of U-Net architectures to segment lung pixels from an X-ray image. After implementing the approach using a benchmark dataset and comparing it to other existing architectures, we present that Attention Dense U-Net gives the best accuracy for all given parameters, with a result of accuracy: 97.48%, Dice coefficient: 94.87%, and IoU: 93.87%.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
susu完成签到,获得积分10
刚刚
活泼的石头完成签到,获得积分10
刚刚
充电宝应助随风采纳,获得10
1秒前
bkagyin应助TMAC采纳,获得10
1秒前
2秒前
loin发布了新的文献求助10
3秒前
ju00发布了新的文献求助10
3秒前
心酒为友完成签到,获得积分10
3秒前
3秒前
春日无尾熊完成签到 ,获得积分10
3秒前
JamesPei应助苗儿采纳,获得10
3秒前
甜甜一刀完成签到,获得积分10
3秒前
朴素亦绿发布了新的文献求助10
3秒前
mia完成签到,获得积分20
3秒前
4秒前
冷静宛海完成签到,获得积分10
5秒前
Foalphaz发布了新的文献求助10
5秒前
李爱国应助yangxt-iga采纳,获得10
5秒前
陈文娜发布了新的文献求助10
6秒前
淮安重午发布了新的文献求助10
6秒前
鲨鱼完成签到,获得积分10
6秒前
6秒前
6秒前
zxx完成签到,获得积分10
6秒前
7秒前
7秒前
shang发布了新的文献求助10
7秒前
小幼芷完成签到,获得积分10
7秒前
7秒前
Orange应助心酒为友采纳,获得10
8秒前
8秒前
jessica完成签到,获得积分10
8秒前
蟹蟹发布了新的文献求助10
8秒前
一忽儿左发布了新的文献求助10
9秒前
爆米花应助陈嘻嘻嘻嘻采纳,获得10
9秒前
9秒前
9秒前
只是朋友还是完成签到,获得积分10
10秒前
10秒前
浮游应助刘佳慧采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5545904
求助须知:如何正确求助?哪些是违规求助? 4631873
关于积分的说明 14623268
捐赠科研通 4573585
什么是DOI,文献DOI怎么找? 2507662
邀请新用户注册赠送积分活动 1484354
关于科研通互助平台的介绍 1455606