Semantic Segmentation with Attention Dense U-Net for Lung Extraction from X-ray Images

深度学习 人工智能 水准点(测量) 计算机科学 像素 分割 光学(聚焦) 特征提取 模式识别(心理学) 机器学习 地图学 光学 物理 地理
作者
Akib Al Mahmud Auvy,Rafiatul Zannah,Mahbub-E-Elahi,Shezhan Sharif,Washik Al Mahmud,Jannatun Noor
标识
DOI:10.1109/iceeict62016.2024.10534437
摘要

Deep learning and digital image processing are crucial in medical imaging research. Lung segmentation is particularly challenging, demanding accurate differentiation of complex structures, sophisticated algorithms, and deep learning models for reliable results. In our research, We used the Shen-zhen chest X-ray dataset, comprising 566 frontal chest X-rays focused on pulmonary tuberculosis. This dataset, compiled by the Guangdong Medical College and Shenzhen No. 3 People's Hospital, was released by the United States National Library of Medicine. Images, captured using a Philips DR Digital Diagnostic system, were resized from $3000 \times 3000$ pixels to $512 \times 512$ pixels for computer-aided diagnosis research. We initially used the Attention Dense U-Net to extract lungs from chest X-rays, leveraging attention mechanisms to focus on relevant features and dense blocks to improve feature reuse. Our goal is to assess its performance for chest X-ray segmentation, comparing it with other deep learning models due to limited research in this area. So, the model is compared with four other variants of U-Net architectures to segment lung pixels from an X-ray image. After implementing the approach using a benchmark dataset and comparing it to other existing architectures, we present that Attention Dense U-Net gives the best accuracy for all given parameters, with a result of accuracy: 97.48%, Dice coefficient: 94.87%, and IoU: 93.87%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
果冻完成签到 ,获得积分10
刚刚
思源应助小土豆采纳,获得10
刚刚
1秒前
不吃香菜完成签到 ,获得积分10
1秒前
andrew完成签到,获得积分10
2秒前
留胡子的小虾米完成签到,获得积分10
4秒前
xy完成签到 ,获得积分10
5秒前
6秒前
文静完成签到 ,获得积分10
6秒前
7秒前
兴钬完成签到 ,获得积分10
7秒前
情怀应助wkl采纳,获得10
7秒前
9秒前
十七完成签到 ,获得积分10
9秒前
zhugao完成签到,获得积分10
10秒前
222完成签到,获得积分10
10秒前
Karry完成签到 ,获得积分10
11秒前
岑夜南完成签到,获得积分10
11秒前
凡事发生必有利于我完成签到,获得积分10
12秒前
tg2024完成签到,获得积分10
13秒前
贾方硕完成签到,获得积分10
15秒前
15秒前
Lu完成签到 ,获得积分10
16秒前
Alpineref完成签到 ,获得积分10
18秒前
晓晓完成签到,获得积分10
19秒前
思源应助鬼笔环肽采纳,获得10
19秒前
laber应助范佳宁采纳,获得50
20秒前
你好完成签到 ,获得积分10
21秒前
阿治完成签到 ,获得积分10
22秒前
凌凌子关注了科研通微信公众号
23秒前
惜折发布了新的文献求助10
23秒前
24秒前
淡然的糖豆完成签到 ,获得积分10
24秒前
江蓠完成签到,获得积分10
26秒前
26秒前
Kung应助515采纳,获得10
26秒前
YY完成签到,获得积分10
27秒前
罗氏集团完成签到,获得积分10
28秒前
kuyedieky发布了新的文献求助10
28秒前
挪威的森林完成签到,获得积分10
29秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3957165
求助须知:如何正确求助?哪些是违规求助? 3503211
关于积分的说明 11111608
捐赠科研通 3234307
什么是DOI,文献DOI怎么找? 1787887
邀请新用户注册赠送积分活动 870808
科研通“疑难数据库(出版商)”最低求助积分说明 802330