Semantic Segmentation with Attention Dense U-Net for Lung Extraction from X-ray Images

深度学习 人工智能 水准点(测量) 计算机科学 像素 分割 光学(聚焦) 特征提取 模式识别(心理学) 机器学习 地图学 物理 光学 地理
作者
Akib Al Mahmud Auvy,Rafiatul Zannah,Mahbub-E-Elahi,Shezhan Sharif,Washik Al Mahmud,Jannatun Noor
标识
DOI:10.1109/iceeict62016.2024.10534437
摘要

Deep learning and digital image processing are crucial in medical imaging research. Lung segmentation is particularly challenging, demanding accurate differentiation of complex structures, sophisticated algorithms, and deep learning models for reliable results. In our research, We used the Shen-zhen chest X-ray dataset, comprising 566 frontal chest X-rays focused on pulmonary tuberculosis. This dataset, compiled by the Guangdong Medical College and Shenzhen No. 3 People's Hospital, was released by the United States National Library of Medicine. Images, captured using a Philips DR Digital Diagnostic system, were resized from $3000 \times 3000$ pixels to $512 \times 512$ pixels for computer-aided diagnosis research. We initially used the Attention Dense U-Net to extract lungs from chest X-rays, leveraging attention mechanisms to focus on relevant features and dense blocks to improve feature reuse. Our goal is to assess its performance for chest X-ray segmentation, comparing it with other deep learning models due to limited research in this area. So, the model is compared with four other variants of U-Net architectures to segment lung pixels from an X-ray image. After implementing the approach using a benchmark dataset and comparing it to other existing architectures, we present that Attention Dense U-Net gives the best accuracy for all given parameters, with a result of accuracy: 97.48%, Dice coefficient: 94.87%, and IoU: 93.87%.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
hao关闭了hao文献求助
刚刚
刚刚
余晨发布了新的文献求助10
1秒前
1秒前
HOAN应助Maggie采纳,获得30
1秒前
所所应助ttrhoton采纳,获得10
2秒前
shenqueying发布了新的文献求助10
2秒前
大模型应助Agnes采纳,获得10
2秒前
2秒前
3秒前
qixycn完成签到,获得积分10
3秒前
缥缈的越彬完成签到,获得积分10
3秒前
3秒前
无敌醉熊完成签到,获得积分10
3秒前
5秒前
脑洞疼应助着急的黄豆采纳,获得10
6秒前
lidd发布了新的文献求助20
6秒前
mwj发布了新的文献求助10
7秒前
Jerry完成签到 ,获得积分10
7秒前
8秒前
幸福遥完成签到 ,获得积分10
8秒前
微笑语山完成签到,获得积分10
9秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
10秒前
陶醉觅夏发布了新的文献求助100
10秒前
10秒前
11秒前
12秒前
余晨完成签到,获得积分20
13秒前
xiuuu发布了新的文献求助10
14秒前
芽芽豆完成签到 ,获得积分10
14秒前
ttrhoton发布了新的文献求助10
15秒前
顾矜应助文艺的蜜蜂采纳,获得10
16秒前
16秒前
自由的含双完成签到,获得积分10
17秒前
17秒前
量子星尘发布了新的文献求助10
18秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5717929
求助须知:如何正确求助?哪些是违规求助? 5249249
关于积分的说明 15283791
捐赠科研通 4867991
什么是DOI,文献DOI怎么找? 2614002
邀请新用户注册赠送积分活动 1563914
关于科研通互助平台的介绍 1521377