作者
Yu Zhang,Bingjie Yang,Sun Wei-ying,Xun Sun,Jing Zhao,Quanhong Li
摘要
A novel natural water-soluble acidic polysaccharide (PWESP-3) was isolated from squash with a molecular mass of 140.519 kDa, which was composed of arabinose (Ara, 35.30 mol%), galactose (Gal, 61.20 mol%), glucose (Glc, 1.80 mol%), and Mannuronic acid (ManA, 1.70 mol%) and contained Araf-(1→, →3)-Araf-(1→, →5)-Araf-(1→, Glcp-(1→, Galp-(1→, →3,5)-Araf-(1→, →2)-Glcp-(1→, →2)-Manp-(1→, →3)-Glcp-(1→, →4)-Galp-(1→, →3)-Galp-(1→, →6)-Galp-(1→, →3,4)-Galp-(1→, →4,6)-Galp-(1→ residues in the backbone. Moreover, the structure of PWESP-3 was identified by NMR spectra. The branch chain was connected to the main chain by the O-3 and O-4 atom of Gal. In addition, the effect of PWESP-3 on STZ-induced type I diabetes mellitus model in MIN6 cells was investigated. The results showed that PWESP-3 can increase the viability and insulin secretion of MIN6 cells and reduce the oxidative stress caused by ROS and NO. Meanwhile, PWESP-3 can also reduce the content of ATP, Ca2+, mitochondrial membrane potential and Caspase-3 activity in MIN6 cells. Furthermore, treatment with PWESP-3 can prevent single or double stranded DNA breaking to form DNA fragments and improve DNA damage in MIN6 cells, thereby avoiding apoptosis. Therefore, the above data highlight that PWESP-3 can improve the function of insulin secretion in STZ-induced MIN6 cells in vitro and can be used as an alternative food supplement to diabetes drugs.