Combining an artificial metathase with a fatty acid decarboxylase in a whole cell for cycloalkene synthesis

环烯烃 化学 生物化学 催化作用
作者
Zhi Zou,Shuke Wu,Daniel Gerngross,Boris Lozhkin,Dongping Chen,Ryo Tachibana,Thomas R. Ward
出处
期刊:Nature Synthesis [Springer Nature]
卷期号:3 (9): 1113-1123 被引量:2
标识
DOI:10.1038/s44160-024-00575-9
摘要

Artificial metalloenzymes (ArMs) offer powerful tools to catalyse new-to-nature reactions. Accordingly, ArMs offer great potential to complement natural enzymes in concurrent cascade reactions. For in cellulo applications, however, the abundance of thiols in the cytosol of aerobic organisms limits the use of ArMs that rely on precious-metal cofactors. To overcome this limitation, compartmentalization of ArMs either in the periplasm or on the surface of Escherichia coli has shown promise. Here we report on our efforts to combine a surface-displayed artificial metathase with UndB, an inner-membrane decarboxylase. The resulting concurrent cascade converts medium-chain dicarboxylates to cyclic alkenes. To optimize the cascade, we evolved both enzymes independently and fine-tuned their expression levels. Compared with the wild-type whole-cell enzyme cascade, the yield of the engineered strain was improved by >75-fold for the conversion of sebacic acid to cyclohexene. Combining natural and artificial metalloenzymes thus offers a promising strategy for whole-cell biocatalysis and synthetic biology to catalyse new-to-nature concurrent cascade reactions. Artificial metalloenzymes are useful catalysts in synthesis, but their use in cells is a challenge. Now, the development of an engineered whole-cell enzymatic cascade, which converts glucose-derived fatty diacids into cycloalkenes, is reported. The cascade process combines a decarboxylase with an artificial metalloenzyme that catalyses an abiotic olefin metathesis reaction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
晚霞不晚发布了新的文献求助10
刚刚
思源应助绿色催化采纳,获得10
1秒前
科研通AI5应助海姆达尔采纳,获得10
1秒前
科研通AI5应助海姆达尔采纳,获得10
1秒前
Singularity应助海姆达尔采纳,获得10
1秒前
科研通AI5应助海姆达尔采纳,获得10
1秒前
万能图书馆应助海姆达尔采纳,获得10
1秒前
1秒前
科研通AI5应助海姆达尔采纳,获得10
1秒前
HMONEY应助海姆达尔采纳,获得10
1秒前
HEIKU应助海姆达尔采纳,获得10
2秒前
科研通AI5应助海姆达尔采纳,获得10
2秒前
momo完成签到,获得积分10
2秒前
大模型应助科研通管家采纳,获得10
3秒前
星辰大海应助科研通管家采纳,获得10
3秒前
CipherSage应助科研通管家采纳,获得10
3秒前
实验好难应助科研通管家采纳,获得10
3秒前
科目三应助科研通管家采纳,获得10
3秒前
传奇3应助科研通管家采纳,获得10
3秒前
FashionBoy应助科研通管家采纳,获得10
3秒前
上官若男应助科研通管家采纳,获得10
3秒前
研友_VZG7GZ应助科研通管家采纳,获得10
3秒前
wkjfh应助科研通管家采纳,获得10
3秒前
科研通AI5应助嘟嘟嘟采纳,获得10
3秒前
斯文败类应助科研通管家采纳,获得10
3秒前
JamesPei应助科研通管家采纳,获得10
3秒前
酷波er应助科研通管家采纳,获得10
4秒前
SYLH应助科研通管家采纳,获得10
4秒前
小马甲应助科研通管家采纳,获得10
4秒前
4秒前
彭于彦祖应助科研通管家采纳,获得20
4秒前
天天快乐应助科研通管家采纳,获得10
4秒前
搜集达人应助科研通管家采纳,获得10
4秒前
4秒前
NexusExplorer应助科研通管家采纳,获得30
4秒前
烟花应助科研通管家采纳,获得10
4秒前
无花果应助科研通管家采纳,获得10
4秒前
SYLH应助科研通管家采纳,获得10
4秒前
CodeCraft应助科研通管家采纳,获得10
4秒前
星辰大海应助科研通管家采纳,获得10
4秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3740956
求助须知:如何正确求助?哪些是违规求助? 3283797
关于积分的说明 10036810
捐赠科研通 3000526
什么是DOI,文献DOI怎么找? 1646584
邀请新用户注册赠送积分活动 783787
科研通“疑难数据库(出版商)”最低求助积分说明 750427