Mixture of Deep Networks for Facial Age Estimation

估计 人工智能 计算机科学 模式识别(心理学) 统计 数学 经济 管理
作者
Qilu Zhao,Jiawei Liu,Weibo Wei
出处
期刊:Information Sciences [Elsevier BV]
卷期号:679: 121086-121086 被引量:1
标识
DOI:10.1016/j.ins.2024.121086
摘要

In this paper, our objective is to simultaneously explore the learning of ordinal relationships among age labels and address the challenge of heterogeneous data resulting from the non-stationary aging process through an advanced mixture model of deep networks. Drawing upon the pivotal insight that the non-stationary aging process can be decomposed into a series of stationary subprocesses, we employ a divide-and-conquer strategy. This involves initially partitioning the age spectrum into multiple groups and subsequently training a specialized deep network, referred to as an "expert", for each distinct group. These experts are not functionally independent; instead, they are interconnected through specialized model designs and a joint training mechanism that consolidates them into a unified system. As a result, the learning of ordinal relationships is consistently maintained by solving the age-related tasks across the entire age label set. The final age estimation is accomplished through a hierarchical classification approach, leveraging the collective outputs from all the experts. Extensive experiments involving several well-known datasets for age estimation have demonstrated the superior performance of our proposed model over several existing state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小刘一定能读C9博完成签到 ,获得积分10
1秒前
kai_完成签到,获得积分10
1秒前
沉默安波发布了新的文献求助10
1秒前
2秒前
复杂的砖头完成签到,获得积分10
5秒前
wwww发布了新的文献求助10
7秒前
同人一剑完成签到,获得积分10
7秒前
xiaolaoshu发布了新的文献求助10
10秒前
直率的菠萝完成签到 ,获得积分10
13秒前
13秒前
16秒前
123完成签到,获得积分10
17秒前
GX发布了新的文献求助30
18秒前
o0o发布了新的文献求助10
19秒前
鲸鱼完成签到,获得积分10
22秒前
o0o完成签到,获得积分10
26秒前
28秒前
橙汁得配曼妥思完成签到 ,获得积分10
29秒前
机智的研究者完成签到,获得积分10
31秒前
打打应助Jenny采纳,获得10
31秒前
传奇3应助公孙世往采纳,获得10
33秒前
34秒前
wenwen发布了新的文献求助10
34秒前
小二郎应助沉默安波采纳,获得10
35秒前
35秒前
36秒前
37秒前
科研通AI5应助xiaolaoshu采纳,获得10
37秒前
谦让的莆发布了新的文献求助10
40秒前
抵澳报了完成签到,获得积分10
43秒前
xr发布了新的文献求助10
43秒前
TRY完成签到,获得积分10
43秒前
cf完成签到,获得积分10
45秒前
典雅碧空应助GX采纳,获得10
46秒前
SYLH完成签到,获得积分0
47秒前
Orange应助xr采纳,获得10
49秒前
51秒前
kirazou完成签到,获得积分10
1分钟前
深情安青应助guantlv采纳,获得10
1分钟前
义气的幻翠完成签到,获得积分10
1分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966246
求助须知:如何正确求助?哪些是违规求助? 3511683
关于积分的说明 11159207
捐赠科研通 3246284
什么是DOI,文献DOI怎么找? 1793339
邀请新用户注册赠送积分活动 874347
科研通“疑难数据库(出版商)”最低求助积分说明 804343