Mixture of Deep Networks for Facial Age Estimation

估计 人工智能 计算机科学 模式识别(心理学) 统计 数学 经济 管理
作者
Qilu Zhao,Jiawei Liu,Weibo Wei
出处
期刊:Information Sciences [Elsevier]
卷期号:679: 121086-121086 被引量:1
标识
DOI:10.1016/j.ins.2024.121086
摘要

In this paper, our objective is to simultaneously explore the learning of ordinal relationships among age labels and address the challenge of heterogeneous data resulting from the non-stationary aging process through an advanced mixture model of deep networks. Drawing upon the pivotal insight that the non-stationary aging process can be decomposed into a series of stationary subprocesses, we employ a divide-and-conquer strategy. This involves initially partitioning the age spectrum into multiple groups and subsequently training a specialized deep network, referred to as an "expert", for each distinct group. These experts are not functionally independent; instead, they are interconnected through specialized model designs and a joint training mechanism that consolidates them into a unified system. As a result, the learning of ordinal relationships is consistently maintained by solving the age-related tasks across the entire age label set. The final age estimation is accomplished through a hierarchical classification approach, leveraging the collective outputs from all the experts. Extensive experiments involving several well-known datasets for age estimation have demonstrated the superior performance of our proposed model over several existing state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
黄强完成签到,获得积分20
2秒前
2秒前
2秒前
3秒前
山谷与花发布了新的文献求助10
4秒前
dm发布了新的文献求助10
4秒前
科研通AI2S应助完美的海秋采纳,获得10
5秒前
黄强发布了新的文献求助10
5秒前
6秒前
dxy发布了新的文献求助10
6秒前
杳鸢应助尔玉采纳,获得30
7秒前
8秒前
9秒前
哇哇哇哇发布了新的文献求助10
9秒前
李善聪发布了新的文献求助10
9秒前
ww发布了新的文献求助10
9秒前
9秒前
shanjianjie应助羲x采纳,获得10
10秒前
11秒前
临妤发布了新的文献求助30
12秒前
非一样的感觉完成签到,获得积分20
13秒前
mei完成签到,获得积分10
14秒前
何默发布了新的文献求助20
15秒前
停停走走发布了新的文献求助10
17秒前
上官若男应助ww采纳,获得10
17秒前
伶俐一曲完成签到 ,获得积分10
20秒前
20秒前
临妤完成签到,获得积分10
21秒前
桐桐应助停停走走采纳,获得10
23秒前
科研通AI2S应助完美的海秋采纳,获得10
23秒前
机智向日葵完成签到 ,获得积分10
26秒前
碳碳双键发布了新的文献求助10
26秒前
26秒前
小宋爱科研完成签到 ,获得积分10
28秒前
李善聪完成签到 ,获得积分10
30秒前
maox1aoxin应助无妄海采纳,获得30
32秒前
66完成签到,获得积分10
32秒前
充电宝应助积极的千易采纳,获得10
33秒前
Akim应助哇哇哇哇采纳,获得10
35秒前
西瓜完成签到 ,获得积分10
35秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
The Vladimirov Diaries [by Peter Vladimirov] 600
Development of general formulas for bolted flanges, by E.O. Waters [and others] 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3265294
求助须知:如何正确求助?哪些是违规求助? 2905244
关于积分的说明 8333171
捐赠科研通 2575616
什么是DOI,文献DOI怎么找? 1399952
科研通“疑难数据库(出版商)”最低求助积分说明 654613
邀请新用户注册赠送积分活动 633471