亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Transformer based ensemble deep learning approach for remote sensing natural scene classification

遥感 计算机科学 人工智能 集成学习 深度学习 变压器 随机森林 模式识别(心理学) 地理 工程类 电压 电气工程
作者
Arrun Sivasubramanian,Prashanth VR,V. Sowmya,Vinayakumar Ravi
出处
期刊:International Journal of Remote Sensing [Informa]
卷期号:45 (10): 3289-3309
标识
DOI:10.1080/01431161.2024.2343141
摘要

Very high resolution (VHR) remote sensing (RS) image classification is paramount for detailed Earth's surface analysis. Feature extraction from VHR natural scenes is crucial, but it becomes a challenging task because of the overlapping edges present in images. Multiple open-source datasets exist in the literature to train robust models, and they have been benchmarked using deep learning models. However, different datasets contain different numbers of classes; a few of them could be absent in other datasets because they are independent of the other classes, and the classes are sometimes not mutually exclusive amongst the same dataset. Thus, it is very challenging to generalize a model trained on a single dataset to perform scene classification on unknown classes of multiple benchmark datasets and real-time images. Thus, this work introduces the Remote Sensing Natural Scenes 92 (RS_NS92) dataset, consisting of 36,785 images belonging to 92 classes, curated by selectively taking the union of all subclasses from five benchmark datasets. This class count is significantly higher than publicly available datasets and maintains a low-class imbalance and a comprehensive data distribution for robust model training. It also provides the remote sensing community with an extra platform to validate the performance on multiple benchmarks. Inspired by federated learning, an ensemble approach consisting of three feature extraction backbones: Vision Transformers, Swin Transformers, and ConvNeXt (termed the VSC_Ensemble model) is also introduced. This model can make extraordinary predictions across multiple datasets by finetuning weights using transfer learning. Experimental analysis with the proposed approach not only obtains a high test accuracy of 97.24% and an F1-score of 0.9587 for the 92 classes on a 90:10 split of the proposed benchmark dataset but also gets excellent results on unseen test images of other datasets, which are comparable to the state-of-the-art results.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kk完成签到 ,获得积分10
刚刚
fransiccarey完成签到,获得积分10
3秒前
DD完成签到 ,获得积分10
7秒前
wangxiaoyu发布了新的文献求助20
8秒前
13秒前
RLOO发布了新的文献求助10
18秒前
伊笙完成签到 ,获得积分10
21秒前
奇拉维特发布了新的文献求助10
25秒前
26秒前
31秒前
34秒前
xxx发布了新的文献求助10
35秒前
貔貅完成签到,获得积分10
37秒前
执着的草丛完成签到,获得积分10
49秒前
51秒前
56秒前
陶醉的烤鸡完成签到,获得积分10
1分钟前
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
灵主完成签到 ,获得积分10
1分钟前
1分钟前
桐桐应助大力的无声采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
爱哭的鱼发布了新的文献求助10
1分钟前
Soaring发布了新的文献求助10
1分钟前
奇拉维特发布了新的文献求助10
1分钟前
DannyNickolov发布了新的文献求助50
1分钟前
1分钟前
南山荣熙应助爱哭的鱼采纳,获得10
1分钟前
2分钟前
水穷云起完成签到,获得积分10
2分钟前
水穷云起发布了新的文献求助10
2分钟前
Paper发发发完成签到,获得积分10
2分钟前
wlei完成签到,获得积分10
2分钟前
2分钟前
2分钟前
暮桉完成签到,获得积分10
2分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
1.3μm GaAs基InAs量子点材料生长及器件应用 1000
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3526513
求助须知:如何正确求助?哪些是违规求助? 3106951
关于积分的说明 9281929
捐赠科研通 2804456
什么是DOI,文献DOI怎么找? 1539468
邀请新用户注册赠送积分活动 716571
科研通“疑难数据库(出版商)”最低求助积分说明 709554