Bifunctional MoC/NiC@N-doped reduced graphene oxide nano electrocatalyst for simultaneous production of hydrogen and oxygen through efficient overall electrochemical water splitting

过电位 电催化剂 分解水 析氧 塔菲尔方程 材料科学 双功能 纳米复合材料 石墨烯 化学工程 氧化物 制氢 无机化学 纳米技术 电化学 化学 催化作用 电极 冶金 有机化学 物理化学 光催化 工程类
作者
Abdullah Al Mahmud,Mohammad R. Thalji,Ganesh Dhakal,Yuvaraj Haldorai,Woo Kyoung Kim,Jae‐Jin Shim
出处
期刊:Materials Today Nano [Elsevier]
卷期号:27: 100489-100489 被引量:1
标识
DOI:10.1016/j.mtnano.2024.100489
摘要

Recently, hydrogen has been an important green energy source for fuel cell-operated vehicles, buildings, power plants, and portable electronics. This study focuses on developing inexpensive, non-noble bifunctional transition metal nano electrocatalysts for producing green hydrogen and industrially important oxygen simultaneously by water splitting. A nanocomposite consisting of two single-metal carbides, MoC and NiC, and nitrogen-doped reduced graphene oxide (N-rGO) was prepared for the first time as an electrocatalyst and used in water splitting. The overpotential of MoC/NiC@N-doped rGO was 185 mV for the hydrogen evolution reaction (HER) and 298 mV for the oxygen evolution reaction (OER). The Tafel slopes for HER and OER were relatively modest, 78 and 80 mV dec−1, respectively. The nanocomposite had a 6.8% lower overpotential than RuO2 for OER. A symmetric two-electrode setup was prepared to split water through HER/OER to produce hydrogen and water simultaneously. In this apparatus, the nanocomposite electrocatalyst exhibited a high performance, raising the current density to 10 mA cm−2 and lowering the cell voltage by 2.5% below the standard material. The nanocomposite showed excellent stability for 55 h for overall water splitting. The highly performing MoC/NiC@N-doped rGO nanocomposite may open the horizon for developing efficient, inexpensive, non-noble bifunctional electrocatalysts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
方圆完成签到,获得积分10
1秒前
1秒前
玲珑油豆腐完成签到,获得积分10
1秒前
1秒前
2秒前
星辰大海应助秋辞采纳,获得10
2秒前
2秒前
科研通AI5应助OceanBlvdforme采纳,获得10
2秒前
VDC发布了新的文献求助10
2秒前
3秒前
香蕉觅云应助DXXX采纳,获得10
4秒前
4秒前
海鸥海鸥发布了新的文献求助30
4秒前
4秒前
深情安青应助系统提示采纳,获得10
4秒前
传奇3应助阿宝采纳,获得10
5秒前
韭黄发布了新的文献求助10
5秒前
6秒前
桐桐应助玲珑油豆腐采纳,获得10
6秒前
charih完成签到 ,获得积分10
6秒前
hxy808关注了科研通微信公众号
7秒前
佚小满完成签到,获得积分10
7秒前
c123完成签到 ,获得积分10
8秒前
8秒前
berry发布了新的文献求助10
8秒前
超11发布了新的文献求助10
8秒前
9秒前
9秒前
隐形曼青应助烩面大师采纳,获得10
9秒前
9秒前
默然的歌完成签到 ,获得积分10
9秒前
CTL发布了新的文献求助10
10秒前
10秒前
10秒前
大鹏完成签到,获得积分10
10秒前
10秒前
10秒前
congguitar发布了新的文献求助10
11秒前
CodeCraft应助韭黄采纳,获得10
11秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759