Generative DEM Void Filling With Terrain Feature-Guided Transfer Learning Assisted by Remote Sensing Images

地形 计算机科学 学习迁移 人工智能 特征(语言学) 遥感 计算机视觉 生成语法 模式识别(心理学) 地质学 地图学 地理 语言学 哲学
作者
Linwei Yue,Bing Gao,Xianwei Zheng
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:21: 1-5 被引量:5
标识
DOI:10.1109/lgrs.2024.3407930
摘要

The quality of digital elevation models (DEMs) is easily affected by data voids in regions with complex terrain conditions. Numerous methods have been proposed to fill DEM voids by effectively exploiting the topographic information from neighboring areas or auxiliary DEMs. However, few studies have considered the integration of multi-modal data, which can provide valuable supplementary information in the areas with no high-quality reference DEM data. In this letter, we propose a generative DEM void filling method by exploring the integration of optical remote sensing images. The core idea is to utilize the image textures to infer the elevation values in the void regions with terrain texture-guided transfer learning. Specifically, the image context attention module (ICAM) is used to preliminarily estimate the missing topographic features by searching the similar patches with the guidance of image context. The terrain feature-guided residual pixel attention block (TFG-RPAB) is then employed to refine the void-filled features by transferring the image textures to topographic features. Finally, the void-filled DEM can be obtained by decoding the reconstructed topographic features. The results shows that the RMSE of RSAGAN is improved by 14.5% to 71.5% when DEM void filling. Both quantitative and qualitative evaluations demonstrate the superiority of the proposed method over the competitive methods in terms of DEM void filling. The source code is available at https://github.com/gaobingcug/RSAGAN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小谢关注了科研通微信公众号
刚刚
高高的远山完成签到,获得积分10
1秒前
shain发布了新的文献求助10
2秒前
2秒前
2秒前
111发布了新的文献求助10
3秒前
微风发布了新的文献求助10
3秒前
4秒前
5秒前
5秒前
今后应助lvxinyan采纳,获得10
6秒前
7秒前
8秒前
8秒前
water应助111采纳,获得10
9秒前
星辰大海应助111采纳,获得10
9秒前
sangxue完成签到 ,获得积分10
10秒前
10秒前
由道罡发布了新的文献求助10
11秒前
12秒前
13秒前
13秒前
毛毛发布了新的文献求助10
13秒前
hmd_150发布了新的文献求助30
14秒前
天真妙旋发布了新的文献求助10
14秒前
16秒前
www发布了新的文献求助10
17秒前
KEQIN应助最美夕阳红采纳,获得10
18秒前
归尘应助陈佳祥采纳,获得10
18秒前
wenbo发布了新的文献求助10
19秒前
河鲸发布了新的文献求助10
19秒前
20秒前
zhj驳回了yar应助
22秒前
11发布了新的文献求助10
22秒前
ZJY关注了科研通微信公众号
24秒前
24秒前
25秒前
飞飞完成签到,获得积分10
25秒前
nini完成签到,获得积分10
25秒前
迅速的安筠完成签到,获得积分20
26秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993587
求助须知:如何正确求助?哪些是违规求助? 3534299
关于积分的说明 11265206
捐赠科研通 3274074
什么是DOI,文献DOI怎么找? 1806303
邀请新用户注册赠送积分活动 883118
科研通“疑难数据库(出版商)”最低求助积分说明 809712