Generative DEM Void Filling With Terrain Feature-Guided Transfer Learning Assisted by Remote Sensing Images

地形 计算机科学 学习迁移 人工智能 特征(语言学) 遥感 计算机视觉 生成语法 模式识别(心理学) 地质学 地图学 地理 语言学 哲学
作者
Linwei Yue,Bing Gao,Xianwei Zheng
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:21: 1-5 被引量:5
标识
DOI:10.1109/lgrs.2024.3407930
摘要

The quality of digital elevation models (DEMs) is easily affected by data voids in regions with complex terrain conditions. Numerous methods have been proposed to fill DEM voids by effectively exploiting the topographic information from neighboring areas or auxiliary DEMs. However, few studies have considered the integration of multi-modal data, which can provide valuable supplementary information in the areas with no high-quality reference DEM data. In this letter, we propose a generative DEM void filling method by exploring the integration of optical remote sensing images. The core idea is to utilize the image textures to infer the elevation values in the void regions with terrain texture-guided transfer learning. Specifically, the image context attention module (ICAM) is used to preliminarily estimate the missing topographic features by searching the similar patches with the guidance of image context. The terrain feature-guided residual pixel attention block (TFG-RPAB) is then employed to refine the void-filled features by transferring the image textures to topographic features. Finally, the void-filled DEM can be obtained by decoding the reconstructed topographic features. The results shows that the RMSE of RSAGAN is improved by 14.5% to 71.5% when DEM void filling. Both quantitative and qualitative evaluations demonstrate the superiority of the proposed method over the competitive methods in terms of DEM void filling. The source code is available at https://github.com/gaobingcug/RSAGAN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
嗨喽完成签到,获得积分10
2秒前
风笛完成签到,获得积分10
3秒前
wangfang0228完成签到 ,获得积分10
3秒前
浮游应助paulin采纳,获得10
3秒前
4秒前
水文新绿微应助zxx采纳,获得20
5秒前
小李子完成签到 ,获得积分10
6秒前
7秒前
酷波er应助拼搏半梦采纳,获得10
8秒前
田様应助Soleil采纳,获得10
9秒前
arzw完成签到,获得积分10
9秒前
响铃发布了新的文献求助10
10秒前
栗爷完成签到,获得积分0
11秒前
杰柒发布了新的文献求助10
11秒前
高挑的不凡完成签到,获得积分10
13秒前
仲夏夜之梦完成签到,获得积分10
17秒前
响铃完成签到,获得积分10
17秒前
18秒前
goodltl完成签到 ,获得积分10
18秒前
善学以致用应助liu采纳,获得10
18秒前
20秒前
大力契应助科研通管家采纳,获得10
20秒前
丘比特应助科研通管家采纳,获得10
20秒前
ding应助科研通管家采纳,获得10
20秒前
隐形曼青应助科研通管家采纳,获得10
20秒前
Owen应助科研通管家采纳,获得10
20秒前
李爱国应助科研通管家采纳,获得10
20秒前
顾矜应助科研通管家采纳,获得10
20秒前
NexusExplorer应助科研通管家采纳,获得100
20秒前
研友_VZG7GZ应助科研通管家采纳,获得10
20秒前
科目三应助科研通管家采纳,获得30
20秒前
21秒前
沙心应助科研通管家采纳,获得10
21秒前
21秒前
科研通AI6应助科研通管家采纳,获得10
21秒前
21秒前
FashionBoy应助科研通管家采纳,获得10
21秒前
深情安青应助科研通管家采纳,获得10
21秒前
21秒前
高分求助中
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Questioning sequences in the classroom 700
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5378793
求助须知:如何正确求助?哪些是违规求助? 4503229
关于积分的说明 14015370
捐赠科研通 4411933
什么是DOI,文献DOI怎么找? 2423548
邀请新用户注册赠送积分活动 1416499
关于科研通互助平台的介绍 1393963