Generative DEM Void Filling With Terrain Feature-Guided Transfer Learning Assisted by Remote Sensing Images

地形 计算机科学 学习迁移 人工智能 特征(语言学) 遥感 计算机视觉 生成语法 模式识别(心理学) 地质学 地图学 地理 语言学 哲学
作者
Linwei Yue,Bing Gao,Xianwei Zheng
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:21: 1-5 被引量:5
标识
DOI:10.1109/lgrs.2024.3407930
摘要

The quality of digital elevation models (DEMs) is easily affected by data voids in regions with complex terrain conditions. Numerous methods have been proposed to fill DEM voids by effectively exploiting the topographic information from neighboring areas or auxiliary DEMs. However, few studies have considered the integration of multi-modal data, which can provide valuable supplementary information in the areas with no high-quality reference DEM data. In this letter, we propose a generative DEM void filling method by exploring the integration of optical remote sensing images. The core idea is to utilize the image textures to infer the elevation values in the void regions with terrain texture-guided transfer learning. Specifically, the image context attention module (ICAM) is used to preliminarily estimate the missing topographic features by searching the similar patches with the guidance of image context. The terrain feature-guided residual pixel attention block (TFG-RPAB) is then employed to refine the void-filled features by transferring the image textures to topographic features. Finally, the void-filled DEM can be obtained by decoding the reconstructed topographic features. The results shows that the RMSE of RSAGAN is improved by 14.5% to 71.5% when DEM void filling. Both quantitative and qualitative evaluations demonstrate the superiority of the proposed method over the competitive methods in terms of DEM void filling. The source code is available at https://github.com/gaobingcug/RSAGAN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
邓年念完成签到,获得积分10
2秒前
2秒前
Windsea完成签到,获得积分10
2秒前
李健应助苟文锋采纳,获得10
3秒前
何雨航发布了新的文献求助10
3秒前
4秒前
4秒前
Lucas应助lily采纳,获得10
5秒前
5秒前
lhr关闭了lhr文献求助
5秒前
6秒前
7秒前
8秒前
隐形曼青应助科研进化中采纳,获得10
8秒前
顶上之战发布了新的文献求助30
9秒前
千早爱音应助123采纳,获得10
11秒前
11秒前
chenmeimei2012完成签到 ,获得积分10
12秒前
12秒前
John发布了新的文献求助10
13秒前
14秒前
苟文锋发布了新的文献求助10
15秒前
16秒前
eating完成签到,获得积分10
17秒前
Windsea发布了新的文献求助10
18秒前
18秒前
18秒前
研友_VZG7GZ应助科研通管家采纳,获得10
18秒前
小二郎应助科研通管家采纳,获得10
18秒前
小蘑菇应助科研通管家采纳,获得10
18秒前
传奇3应助科研通管家采纳,获得10
18秒前
烟花应助科研通管家采纳,获得10
18秒前
清脆天空发布了新的文献求助10
18秒前
丘比特应助科研通管家采纳,获得10
18秒前
及禾应助科研通管家采纳,获得20
18秒前
18秒前
浮游应助科研通管家采纳,获得10
19秒前
fyattojsk应助科研通管家采纳,获得20
19秒前
酷波er应助科研通管家采纳,获得10
19秒前
所所应助科研通管家采纳,获得10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5299457
求助须知:如何正确求助?哪些是违规求助? 4447594
关于积分的说明 13843316
捐赠科研通 4333203
什么是DOI,文献DOI怎么找? 2378632
邀请新用户注册赠送积分活动 1373923
关于科研通互助平台的介绍 1339452