亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Enhancing Cervical Cell Detection through Weakly Supervised Learning with Local Distillation Mechanism

计算机科学 人工智能 目标检测 宫颈癌 探测器 像素 机器学习 分割 模式识别(心理学) 癌症 医学 电信 内科学
作者
Juanjuan Yin,Qian Zhang,Xinyi Xi,Menghao Liu,Wenjing Lü,Huijuan Tu
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:12: 77104-77113
标识
DOI:10.1109/access.2024.3407066
摘要

Cervical cancer is a malignancy that significantly impacts women's health. Liquid-based thin-layer cytology examination is presently the predominant method for cervical cancer cell detection. Traditional identification of pathological images of cervical cells mainly relies on professional physicians, which is time-consuming, labor-intensive, and has considerable limitations. The integration of deep learning with imaging showcases remarkable performance in medical-assisted diagnosis. Nevertheless, conventional fully supervised detection techniques face challenges in acquiring comprehensive annotated data samples. Moreover, the intricate cell categories within cervical cells present complexities, especially in small object detection. To address the aforementioned issues, we propose a weakly supervised model for cervical cell detection, named LD-WSCCD, based on a local distillation mechanism. First, our model extracts image features using single shot multibox detector (SSD). Then, leveraging the concept of knowledge distillation, a local distillation mechanism is designed to segregate foreground and complex background regions, directing the student network to concentrate on crucial pixels and channels. Finally, the detection of cervical cells is performed utilizing a multi-instance detector. Experimental results on a publicly accessible cervical cell dataset validate the effectiveness of our approach, boasting a mean average precision (mAP) value of 73.6%, surpassing other similar detection models. In future research, we aim to establish a comprehensive dataset of cervical pathological cells. Our focus is on enhancing the model's detection accuracy at the target boundary to effectively address the challenge of overlapping adhesive cells in cervical samples. Our goal is to achieve a well-balanced trade-off between the model's accuracy and speed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
oleskarabach发布了新的文献求助10
1秒前
1秒前
顾矜应助TJY采纳,获得10
4秒前
朴素若枫完成签到,获得积分10
4秒前
咖啡续命发布了新的文献求助10
7秒前
云深完成签到 ,获得积分10
11秒前
14秒前
Atlantis完成签到 ,获得积分10
14秒前
16秒前
在水一方应助zzzzzttt采纳,获得10
18秒前
早晚完成签到 ,获得积分10
19秒前
19秒前
Yasong发布了新的文献求助10
20秒前
大个应助英俊的雁易采纳,获得10
21秒前
23秒前
mo0应助Yasong采纳,获得20
24秒前
烟花应助niuya采纳,获得10
24秒前
科研通AI2S应助咖啡续命采纳,获得10
25秒前
TTK关闭了TTK文献求助
25秒前
25秒前
26秒前
Rheane发布了新的文献求助10
26秒前
santory发布了新的文献求助10
27秒前
缪尔岚完成签到,获得积分10
28秒前
所所应助believe采纳,获得10
31秒前
欢喜怀绿发布了新的文献求助30
31秒前
34秒前
34秒前
39秒前
清森完成签到 ,获得积分10
40秒前
41秒前
万能图书馆应助fat采纳,获得10
42秒前
believe发布了新的文献求助10
44秒前
Owen应助默默采纳,获得10
44秒前
46秒前
酷波er应助niuya采纳,获得10
46秒前
义气幼珊完成签到 ,获得积分10
50秒前
寻道图强完成签到,获得积分0
51秒前
believe完成签到,获得积分10
52秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 600
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3234502
求助须知:如何正确求助?哪些是违规求助? 2880883
关于积分的说明 8217231
捐赠科研通 2548429
什么是DOI,文献DOI怎么找? 1377761
科研通“疑难数据库(出版商)”最低求助积分说明 647999
邀请新用户注册赠送积分活动 623314