Improving stability and safety in concrete structures against high-energy projectiles: a machine learning perspective

透视图(图形) 射弹 理论(学习稳定性) 材料科学 法律工程学 计算机科学 工程类 人工智能 机器学习 冶金
作者
Qianhui Zhang,Yuzhen Jin,Guangzhi Wang,Qingmei Sun,Hamzeh Ghorbani
出处
期刊:Frontiers in Materials [Frontiers Media SA]
卷期号:11
标识
DOI:10.3389/fmats.2024.1416918
摘要

Concrete structures are commonly used as secure settlements and strategic shelters due to their inherent strength, durability, and wide availability. Examining the robustness and integrity of strategic concrete structures in the face of super-energy projectiles is of utmost significance in safeguarding vital infrastructure sectors, ensuring the well-being of individuals, and advancing the course of worldwide sustainable progress. This research focuses on forecasting the penetration depth (BPD) through the application of robust models, such as Multilayer Perceptron (MLP), Support Vector Machine (SVM), Light Gradient Boosting Machine (LightGBM), and K-Nearest Neighbors (KNN) as ML models. The dataset used consists of 1,020 data points sourced from the National Institute of Standards and Technology (NIST), encompassing various parameters such as cement content (Cp), ground granulated blast-furnace slag (GGBFS), fly ash content (FA), water portion (Wp), superplasticizer content (Sp), coarse aggregate content (CA), fine aggregate content (FAA), concrete sample age (t), concrete compressive strength (CCS), gun type (G-type), bullet caliber (B-Cali), bullet weight (Wb), and bullet velocity (Vb). Feature selection techniques revealed that the MLP model, incorporating eight input variables (FA, CA, Sp, GGBFS, Cp, t, FAA, and CCS), provides the most accurate predictions for BPD across the entire dataset. Comparing the four models used in this study, KNN demonstrates distinct superiority over the other methods. KNN, a non-parametric ML model used for classification and regression, possesses several advantages, including simplicity, non-parametric nature, no training requirements, robustness to noisy data, suitability for large datasets, and interpretability. The results reveal that KNN outperforms the other models presented in this paper, exhibiting an R 2 value of 0.9905 and an RMSE value of 0.1811 cm, signifying higher accuracy in its predictions compared to the other models. Finally, based on the error analysis across iterations, it is evident that the final accuracy error of the KNN model surpasses that of the SVM, MLP, and LightGBM models, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
恒恒666完成签到 ,获得积分10
刚刚
Orange应助流星采纳,获得10
1秒前
皮卡发布了新的文献求助10
1秒前
muyangsiyuan发布了新的文献求助10
2秒前
2秒前
Fiang发布了新的文献求助10
2秒前
3秒前
科研通AI2S应助crazy采纳,获得10
4秒前
智慧脑袋不秃头完成签到,获得积分20
4秒前
酷波er应助六个核桃采纳,获得10
5秒前
5秒前
龙k完成签到 ,获得积分10
5秒前
王哪跑12发布了新的文献求助10
6秒前
7秒前
8秒前
高sir发布了新的文献求助20
10秒前
10秒前
脑洞疼应助早早发论文采纳,获得10
11秒前
17860690918发布了新的文献求助10
11秒前
11秒前
wanci应助孤独的晓丝采纳,获得10
11秒前
笑点低不言完成签到,获得积分10
12秒前
流星发布了新的文献求助10
13秒前
书羽发布了新的文献求助10
14秒前
不安栾发布了新的文献求助10
15秒前
16秒前
hanzhiyuxing发布了新的文献求助10
16秒前
一只特立独行的猫完成签到,获得积分10
17秒前
19秒前
斯文败类应助soso1010采纳,获得10
20秒前
20秒前
想想发布了新的文献求助10
21秒前
Summer完成签到 ,获得积分10
22秒前
吴青应助crazy采纳,获得10
22秒前
23秒前
24秒前
FashionBoy应助孙小雨采纳,获得10
24秒前
46464号发布了新的文献求助10
24秒前
25秒前
听见发布了新的文献求助30
29秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Devlopment of GaN Resonant Cavity LEDs 666
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3455209
求助须知:如何正确求助?哪些是违规求助? 3050548
关于积分的说明 9021471
捐赠科研通 2739114
什么是DOI,文献DOI怎么找? 1502452
科研通“疑难数据库(出版商)”最低求助积分说明 694529
邀请新用户注册赠送积分活动 693302