QSARtuna: An Automated QSAR Modeling Platform for Molecular Property Prediction in Drug Design

数量结构-活动关系 计算机科学 财产(哲学) 药品 分子描述符 人工智能 机器学习 数据挖掘 医学 药理学 认识论 哲学
作者
Lewis Mervin,Alexey Voronov,Mikhail A. Kabeshov,Ola Engkvist
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:64 (14): 5365-5374 被引量:8
标识
DOI:10.1021/acs.jcim.4c00457
摘要

Machine-learning (ML) and deep-learning (DL) approaches to predict the molecular properties of small molecules are increasingly deployed within the design-make-test-analyze (DMTA) drug design cycle to predict molecular properties of interest. Despite this uptake, there are only a few automated packages to aid their development and deployment that also support uncertainty estimation, model explainability, and other key aspects of model usage. This represents a key unmet need within the field, and the large number of molecular representations and algorithms (and associated parameters) means it is nontrivial to robustly optimize, evaluate, reproduce, and deploy models. Here, we present QSARtuna, a molecule property prediction modeling pipeline, written in Python and utilizing the Optuna, Scikit-learn, RDKit, and ChemProp packages, which enables the efficient and automated comparison between molecular representations and machine learning models. The platform was developed by considering the increasingly important aspect of model uncertainty quantification and explainability by design. We provide details for our framework and provide illustrative examples to demonstrate the capability of the software when applied to simple molecular property, reaction/reactivity prediction, and DNA encoded library enrichment classification. We hope that the release of QSARtuna will further spur innovation in automatic ML modeling and provide a platform for education of best practices in molecular property modeling. The code for the QSARtuna framework is made freely available via GitHub.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
圆圈完成签到,获得积分10
1秒前
2秒前
acb发布了新的文献求助10
2秒前
自由语柳发布了新的文献求助10
2秒前
2秒前
嗯哼发布了新的文献求助10
3秒前
muyiyangdi应助感冒了采纳,获得10
4秒前
极度发布了新的文献求助10
4秒前
丘比特应助仲夏采纳,获得10
4秒前
4秒前
闪闪幻枫发布了新的文献求助10
5秒前
5秒前
刘明兴完成签到,获得积分10
5秒前
leung完成签到,获得积分10
6秒前
xu发布了新的文献求助10
7秒前
7秒前
7秒前
hmf1995完成签到 ,获得积分10
7秒前
站住浩子发布了新的文献求助10
7秒前
8秒前
8秒前
8秒前
9秒前
10秒前
在水一方应助段一帆采纳,获得10
10秒前
刘明兴发布了新的文献求助10
11秒前
11秒前
李梦凡完成签到,获得积分10
11秒前
11秒前
jjk发布了新的文献求助30
12秒前
mx应助自由语柳采纳,获得30
12秒前
12秒前
la完成签到 ,获得积分10
12秒前
BSDL发布了新的文献求助10
13秒前
butaishao发布了新的文献求助10
13秒前
Lydia发布了新的文献求助30
14秒前
坚强幼晴发布了新的文献求助10
14秒前
15秒前
仲夏发布了新的文献求助10
15秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961892
求助须知:如何正确求助?哪些是违规求助? 3508143
关于积分的说明 11139862
捐赠科研通 3240824
什么是DOI,文献DOI怎么找? 1791076
邀请新用户注册赠送积分活动 872725
科研通“疑难数据库(出版商)”最低求助积分说明 803344