Wavelet-pixel domain progressive fusion network for underwater image enhancement

图像融合 小波 人工智能 水下 计算机科学 像素 计算机视觉 图像增强 融合 图像(数学) 地质学 语言学 海洋学 哲学
作者
Shiben Liu,Huijie Fan,Qiang Wang,Zhi Han,Yu Guan,Yandong Tang
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:299: 112049-112049
标识
DOI:10.1016/j.knosys.2024.112049
摘要

Due to the complexity of the underwater environment, underwater images suffer from low-illumination, color deviation, and blurred details. Conventional underwater image enhancement (UIE) approaches have achieved remarkable success in improving color and illumination in the pixel domain. However, they ignore fine-grained details during the enhancement process. To solve these problems, we propose a novel wavelet-pixel domain progressive fusion network (WPFNet) to improve details while enhancing illumination and reducing color deviation for degraded underwater images. Unlike the UIE method, we propose a wavelet domain module (WDM) to obtain different scale frequency features with fine-grained details. Concretely, we develop a residual attention block (RAB) that optimizes low-frequency sub-images to maintain rich details, and enhance color and illumination information for low-frequency features.Transformer block (T_Block) is proposed to convert three high-frequency sub-images into high-frequency features operated by self-attention mechanism. Frequency features are obtained by adding low- and high-frequency features from the same scale, suffering from insufficient color and illumination information. Thus, the pixel domain module (PDM) is introduced to extract spatial features of different scales with rich color and illumination information in the pixel domain. Reconstruction module (REM) is proposed to fuse frequency and spatial features from small to large scale to restructure clear underwater images. The dual-domain fusion block (DFB) is proposed as a key element of REM, which exploits the constraint signal to fuse superior information of frequency and spatial features. Finally, our WPFNet obtains high-quality underwater images in four benchmark datasets and achieves superior performance compared to state-of-the-art UIE methods. The code is available at: https://github.com/LiuShiBen/WPFNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
水知寒完成签到,获得积分10
刚刚
神途完成签到,获得积分10
刚刚
wyw完成签到,获得积分10
刚刚
1秒前
新开完成签到,获得积分10
3秒前
bb完成签到,获得积分10
3秒前
4秒前
4秒前
5秒前
陈哟发布了新的文献求助10
6秒前
CO_Pro完成签到,获得积分10
7秒前
是个小朋友啊完成签到,获得积分10
7秒前
wsf2023发布了新的文献求助10
7秒前
东瓜山完成签到 ,获得积分10
7秒前
8秒前
8秒前
8秒前
9秒前
背后的纸飞机完成签到,获得积分10
9秒前
yc发布了新的文献求助10
11秒前
bd发布了新的文献求助10
11秒前
Patrick完成签到,获得积分10
11秒前
气泡水发布了新的文献求助10
13秒前
气泡水发布了新的文献求助10
13秒前
气泡水发布了新的文献求助10
13秒前
不配.应助sxc采纳,获得20
13秒前
p13508397190完成签到,获得积分10
14秒前
满意的柏柳应助adinike采纳,获得10
15秒前
和平星完成签到 ,获得积分10
15秒前
wuxiaochen发布了新的文献求助30
16秒前
16秒前
erhan7完成签到,获得积分20
17秒前
17秒前
火星上问柳完成签到,获得积分20
18秒前
zmy完成签到,获得积分10
18秒前
王铭卓完成签到,获得积分10
19秒前
fwt发布了新的文献求助30
19秒前
19秒前
19秒前
吕小布完成签到,获得积分10
20秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143628
求助须知:如何正确求助?哪些是违规求助? 2795064
关于积分的说明 7813166
捐赠科研通 2451128
什么是DOI,文献DOI怎么找? 1304317
科研通“疑难数据库(出版商)”最低求助积分说明 627213
版权声明 601393