Size prediction of drug-loaded Polymeric (PLGA) microparticles prepared by microfluidics

PLGA公司 微流控 分散性 材料科学 纳米技术 流动聚焦 乳状液 药物输送 乙烯醇 流体体积法 纳米颗粒 复合材料 聚合物 高分子化学 化学工程 流量(数学) 工程类 机械 物理
作者
Mehrnaz Oveysi,Ali Reza Rezvani,Mohammad Mahdi Karim Khani,Vahid Bazargan,Amir Nejat,Reyhaneh Varshochian,Marco Marengo
出处
期刊:Journal of Drug Delivery Science and Technology [Elsevier]
卷期号:98: 105776-105776 被引量:2
标识
DOI:10.1016/j.jddst.2024.105776
摘要

Drug-loaded poly (lactic-co-glycolic acid) (PLGA) microparticles with ex-act control over size and homogeneity were created using a glass microfluidic cross-junction droplet generator. A numerical simulation based on the volume-of-fluid (VOF) method is used to study the behavior of two immiscible fluids that are injected into the microdevice: hydrophobic drug and (PLGA) in dichloromethane (DCM) serving as the dispersed phase and aqueous solution of poly (vinyl alcohol) (PVA) as the continuous phase. The simulation predicts the created emulsion droplet size regulation by adjusting the phase's flow rate. In a procedure known as droplet shrinking, dichloromethane extraction, and evaporation took place to further transform the monodisperse emulsion into PLGA microparticles. A numerical relationship is also given for the variations in the volume of droplets during shrinkage. The numerical results were consistent with the experiments. To further illustrate this technique's ability to manufacture designed microspheres with the least amount of repeated experiments, as well as the importance of the droplet microfluidic approach in terms of regulating diameter and monodispersity, opioid antagonist naltrexone is loaded in PLGA microspheres. According to the findings, integrating a versatile microfluidic approach with numerical methodologies enables the development of more reliable and reproducible drug delivery systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hhh完成签到,获得积分10
刚刚
不吃鱼完成签到,获得积分10
刚刚
务实的焦发布了新的文献求助10
刚刚
1秒前
刘英丽发布了新的文献求助10
1秒前
研友_ngXbVZ完成签到,获得积分10
1秒前
2秒前
2秒前
2秒前
着急的cc完成签到,获得积分10
3秒前
顾矜应助Renhong采纳,获得10
3秒前
ZS完成签到,获得积分10
3秒前
3秒前
3秒前
czz完成签到,获得积分10
3秒前
4秒前
果冻儿发布了新的文献求助10
4秒前
媛媛子完成签到,获得积分10
4秒前
buerjia完成签到,获得积分10
5秒前
支安白发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
科研通AI5应助chen采纳,获得10
6秒前
6秒前
6秒前
qw1发布了新的文献求助10
7秒前
7秒前
桐桐应助脑子用去发泡了采纳,获得10
7秒前
小黑妞发布了新的文献求助10
7秒前
7秒前
tt完成签到,获得积分10
8秒前
spiritpope完成签到,获得积分10
8秒前
研友_ngXbVZ发布了新的文献求助10
8秒前
Ava应助科研通管家采纳,获得30
8秒前
wuqian发布了新的文献求助10
8秒前
丘比特应助科研通管家采纳,获得10
8秒前
方赫然应助科研通管家采纳,获得10
9秒前
打打应助科研通管家采纳,获得10
9秒前
JFH应助科研通管家采纳,获得10
9秒前
高分求助中
Genetics: From Genes to Genomes 3000
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3474762
求助须知:如何正确求助?哪些是违规求助? 3066860
关于积分的说明 9101503
捐赠科研通 2758260
什么是DOI,文献DOI怎么找? 1513498
邀请新用户注册赠送积分活动 699576
科研通“疑难数据库(出版商)”最低求助积分说明 699031