化学
毛细管电泳
色谱法
毛细管作用
复合材料
材料科学
作者
Timotej Jankech,Ivana Gerhardtová,Ondrej Štefánik,Petra Chaľová,Josef Jampílek,Petra Majerová,Andrej Kováč,Juraj Piešťanský
标识
DOI:10.1016/j.aca.2024.342889
摘要
Separation analytical methods, including liquid chromatography (LC) and capillary electrophoresis (CE), in combination with an appropriate detection technique, are dominant and powerful approaches preferred in the analysis of pharmaceutical and biomedical samples. Recent trends in analytical methods are focused on activities that push them to the field of greenness and sustainability. New approaches based on the implementation of greener solvents, non-hazardous chemicals, and reagents have grown exponentially. Similarly, recent trends are pushed in to the strategies based on miniaturization, reduction of wastes, avoiding derivatization procedures, or reduction of energy consumption. However, the real greenness of the analytical method can be evaluated only according to an objective and sufficient metric offering complex results taking into account all twelve rules of green analytical chemistry (SIGNIFICANCE mnemonic system). This review provides an extensive overview of papers published in the area of development of green LC and CE methods in the field of pharmaceutical and biomedical analysis over the last 5 years (2019-2023). The main focus is situated on the metrics used for greenness evaluation of the methods applied for the determination of bioactive agents. It critically evaluates and compares the demands of the real applicability of the methods in quality control and clinical environment with the requirements of the green analytical chemistry (GAC). Greenness and practicality of the summarized methods are re-evaluated or newly evaluated with the use of the dominant metrics tools, i.e., Analytical GREEnness (AGREE), Green Analytical Procedure Index (GAPI), Blue Applicability Grade Index (BAGI), and Sample Preparation Metric of Sustainability (SPMS). Moreover, general conclusions and future perspectives of the greening procedures and greenness evaluation metrics systems are presented. This paper should provide comprehensive information to analytical chemists, biochemists, and it can also represent a valuable source of information for clinicians, biomedical or quality control laboratories interested in development of analytical methods based on greenness, practicality, and sustainability.
科研通智能强力驱动
Strongly Powered by AbleSci AI