材料科学
陶瓷
氧化物
电解质
金属
接口(物质)
固态
纳米技术
无机化学
化学工程
工程物理
复合材料
冶金
电极
物理化学
工程类
润湿
化学
坐滴法
作者
Wei Wang,Nana Bai,Yaqing Wang,Xing He,Di Zhang,Zhaojin Li,Qujiang Sun,Huilan Sun,Bo Wang,Guoxu Wang,Li‐Zhen Fan
标识
DOI:10.1016/j.ensm.2024.103589
摘要
Solid-state lithium metal batteries (SSLMBs) with ultra-high energy density and excellent safety features are considered ideal candidates for next-generation energy storage devices. Solid-state electrolytes (SSEs) as critical materials for SSLMBs include oxide-type, sulfide-type, and polymer-type etc. Among numerous types of SSEs, ceramic oxide solid-state electrolytes (OSEs) are developing rapidly on account of their high ionic conductivity, electrochemical as well as thermal stability. Nevertheless, the huge interfacial resistance caused by the inferior solid-solid interfacial contact between the OSEs and electrode materials, and the growth of lithium dendrites resulting from the inhomogeneous deposition of the lithium, have seriously hindered the development of OSEs-based SSLMBs. Here, we analyze the properties of OSEs and their properties for the electrode materials in SSLMB. Based on these consequences, advanced strategies for improving the interface between OSEs and cathode/anode electrode materials are systematically discussed, involving strategies such as interfacial modification, electrode/OSEs engineering, and the design of the structure of the electrode/OSEs. The insights provided in this review not only enable researchers in the field to further understand the fundamentals, stability, and necessity of modification of OSE/electrode interfaces but also guide the future design of OSEs-based SSLMB interfaces.
科研通智能强力驱动
Strongly Powered by AbleSci AI