Universal Machine Learning Kohn–Sham Hamiltonian for Materials

Kohn-Sham方程 电子结构 计算机科学 哈密顿量(控制论) 概括性 计算科学 材料科学 物理 纳米技术 统计物理学 数学 计算化学 密度泛函理论 化学 数学优化 心理学 心理治疗师
作者
Yang Zhong,Hongyu Yu,Ji‐Hui Yang,Xingyu Guo,Hongjun Xiang,Xin-Gao Gong
出处
期刊:Chinese Physics Letters [Institute of Physics]
卷期号:41 (7): 077103-077103 被引量:21
标识
DOI:10.1088/0256-307x/41/7/077103
摘要

Abstract While density functional theory (DFT) serves as a prevalent computational approach in electronic structure calculations, its computational demands and scalability limitations persist. Recently, leveraging neural networks to parameterize the Kohn–Sham DFT Hamiltonian has emerged as a promising avenue for accelerating electronic structure computations. Despite advancements, challenges such as the necessity for computing extensive DFT training data to explore each new system and the complexity of establishing accurate machine learning models for multi-elemental materials still exist. Addressing these hurdles, this study introduces a universal electronic Hamiltonian model trained on Hamiltonian matrices obtained from first-principles DFT calculations of nearly all crystal structures on the Materials Project. We demonstrate its generality in predicting electronic structures across the whole periodic table, including complex multi-elemental systems, solid-state electrolytes, Moiré twisted bilayer heterostructure, and metal-organic frameworks. Moreover, we utilize the universal model to conduct high-throughput calculations of electronic structures for crystals in GNoME datasets, identifying 3940 crystals with direct band gaps and 5109 crystals with flat bands. By offering a reliable efficient framework for computing electronic properties, this universal Hamiltonian model lays the groundwork for advancements in diverse fields, such as easily providing a huge data set of electronic structures and also making the materials design across the whole periodic table possible.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助科研通管家采纳,获得10
刚刚
刚刚
hqz发布了新的文献求助10
刚刚
李爱国应助科研通管家采纳,获得10
刚刚
汉堡包应助科研通管家采纳,获得10
刚刚
香蕉觅云应助科研通管家采纳,获得10
刚刚
Akim应助科研通管家采纳,获得10
刚刚
浮游应助科研通管家采纳,获得10
刚刚
刚刚
1秒前
ding应助科研通管家采纳,获得10
1秒前
Ava应助科研通管家采纳,获得30
1秒前
华仔应助科研通管家采纳,获得30
1秒前
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
SciGPT应助科研通管家采纳,获得10
1秒前
陌路完成签到,获得积分10
1秒前
烟花应助科研通管家采纳,获得10
1秒前
2秒前
paper888发布了新的文献求助20
2秒前
研友_VZG7GZ应助科研通管家采纳,获得10
2秒前
量子星尘发布了新的文献求助10
3秒前
香蕉觅云应助有机小鸟采纳,获得10
3秒前
3秒前
cdercder应助会撒娇的慕梅采纳,获得10
4秒前
归尘发布了新的文献求助10
4秒前
5秒前
韦恩发布了新的文献求助10
5秒前
JamesPei应助sining采纳,获得10
5秒前
6秒前
7秒前
科研通AI5应助喜多采纳,获得10
7秒前
7秒前
斯文败类应助风中秋天采纳,获得10
8秒前
8秒前
8秒前
勤恳的听兰完成签到,获得积分10
8秒前
lzp完成签到 ,获得积分10
10秒前
在水一方应助nie采纳,获得10
10秒前
共享精神应助mtf采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
“Now I Have My Own Key”: The Impact of Housing Stability on Recovery and Recidivism Reduction Using a Recovery Capital Framework 500
The Red Peril Explained: Every Man, Woman & Child Affected 400
The Social Work Ethics Casebook(2nd,Frederic G. Reamer) 400
A Case Study on Hotels as Noncongregate Emergency Living Accommodations for Returning Citizens 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5017316
求助须知:如何正确求助?哪些是违规求助? 4257037
关于积分的说明 13267322
捐赠科研通 4061271
什么是DOI,文献DOI怎么找? 2221184
邀请新用户注册赠送积分活动 1230498
关于科研通互助平台的介绍 1153124