Kohn-Sham方程
电子结构
计算机科学
哈密顿量(控制论)
概括性
计算科学
材料科学
物理
纳米技术
统计物理学
数学
计算化学
密度泛函理论
化学
数学优化
心理学
心理治疗师
作者
Yang Zhong,Hongyu Yu,Ji‐Hui Yang,Xingyu Guo,Hongjun Xiang,Xin-Gao Gong
标识
DOI:10.1088/0256-307x/41/7/077103
摘要
Abstract While density functional theory (DFT) serves as a prevalent computational approach in electronic structure calculations, its computational demands and scalability limitations persist. Recently, leveraging neural networks to parameterize the Kohn–Sham DFT Hamiltonian has emerged as a promising avenue for accelerating electronic structure computations. Despite advancements, challenges such as the necessity for computing extensive DFT training data to explore each new system and the complexity of establishing accurate machine learning models for multi-elemental materials still exist. Addressing these hurdles, this study introduces a universal electronic Hamiltonian model trained on Hamiltonian matrices obtained from first-principles DFT calculations of nearly all crystal structures on the Materials Project. We demonstrate its generality in predicting electronic structures across the whole periodic table, including complex multi-elemental systems, solid-state electrolytes, Moiré twisted bilayer heterostructure, and metal-organic frameworks. Moreover, we utilize the universal model to conduct high-throughput calculations of electronic structures for crystals in GNoME datasets, identifying 3940 crystals with direct band gaps and 5109 crystals with flat bands. By offering a reliable efficient framework for computing electronic properties, this universal Hamiltonian model lays the groundwork for advancements in diverse fields, such as easily providing a huge data set of electronic structures and also making the materials design across the whole periodic table possible.
科研通智能强力驱动
Strongly Powered by AbleSci AI