Universal Machine Learning Kohn–Sham Hamiltonian for Materials

Kohn-Sham方程 电子结构 计算机科学 哈密顿量(控制论) 概括性 计算科学 材料科学 物理 纳米技术 统计物理学 数学 计算化学 密度泛函理论 化学 数学优化 心理学 心理治疗师
作者
Yang Zhong,Hongyu Yu,Ji‐Hui Yang,Xingyu Guo,Hongjun Xiang,Xin-Gao Gong
出处
期刊:Chinese Physics Letters [IOP Publishing]
卷期号:41 (7): 077103-077103 被引量:21
标识
DOI:10.1088/0256-307x/41/7/077103
摘要

Abstract While density functional theory (DFT) serves as a prevalent computational approach in electronic structure calculations, its computational demands and scalability limitations persist. Recently, leveraging neural networks to parameterize the Kohn–Sham DFT Hamiltonian has emerged as a promising avenue for accelerating electronic structure computations. Despite advancements, challenges such as the necessity for computing extensive DFT training data to explore each new system and the complexity of establishing accurate machine learning models for multi-elemental materials still exist. Addressing these hurdles, this study introduces a universal electronic Hamiltonian model trained on Hamiltonian matrices obtained from first-principles DFT calculations of nearly all crystal structures on the Materials Project. We demonstrate its generality in predicting electronic structures across the whole periodic table, including complex multi-elemental systems, solid-state electrolytes, Moiré twisted bilayer heterostructure, and metal-organic frameworks. Moreover, we utilize the universal model to conduct high-throughput calculations of electronic structures for crystals in GNoME datasets, identifying 3940 crystals with direct band gaps and 5109 crystals with flat bands. By offering a reliable efficient framework for computing electronic properties, this universal Hamiltonian model lays the groundwork for advancements in diverse fields, such as easily providing a huge data set of electronic structures and also making the materials design across the whole periodic table possible.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助加百莉采纳,获得10
刚刚
刚刚
1秒前
无花果应助cloud采纳,获得10
1秒前
不安的寄松关注了科研通微信公众号
1秒前
2秒前
XXX发布了新的文献求助10
2秒前
Vizz完成签到,获得积分10
2秒前
经法发布了新的文献求助10
2秒前
系统提示发布了新的文献求助20
2秒前
脑洞疼应助xx采纳,获得10
3秒前
3秒前
3秒前
3秒前
tx发布了新的文献求助10
4秒前
4秒前
4秒前
rrjl发布了新的文献求助30
5秒前
5秒前
5秒前
浮游应助科研通管家采纳,获得10
5秒前
CipherSage应助科研通管家采纳,获得10
5秒前
nature完成签到,获得积分10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
LALALA完成签到,获得积分10
6秒前
赘婿应助科研通管家采纳,获得10
6秒前
慕青应助科研通管家采纳,获得80
6秒前
深情安青应助科研通管家采纳,获得10
6秒前
顾矜应助科研通管家采纳,获得10
6秒前
粥粥爱糊糊完成签到,获得积分10
6秒前
酷波er应助科研通管家采纳,获得10
6秒前
李爱国应助科研通管家采纳,获得10
6秒前
赘婿应助科研通管家采纳,获得10
6秒前
Lucas应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
在水一方应助科研通管家采纳,获得10
6秒前
ding应助科研通管家采纳,获得10
6秒前
隐形曼青应助科研通管家采纳,获得10
7秒前
搜集达人应助科研通管家采纳,获得10
7秒前
无花果应助科研通管家采纳,获得10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
Efficacy of sirolimus in Klippel-Trenaunay syndrome 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5479337
求助须知:如何正确求助?哪些是违规求助? 4580925
关于积分的说明 14377452
捐赠科研通 4509459
什么是DOI,文献DOI怎么找? 2471322
邀请新用户注册赠送积分活动 1457836
关于科研通互助平台的介绍 1431668