Commercial Truck Risk Assessment and Factor Analysis Based on Vehicle Trajectory and In-Vehicle Monitoring Data

卡车 撞车 运输工程 商用车 工程类 计算机科学 汽车工程 程序设计语言
作者
Xuesong Wang,Xiaowei Tang,Tianxiang Fan,Yanru Zhou,Xiaohan Yang
出处
期刊:Transportation Research Record [SAGE Publishing]
标识
DOI:10.1177/03611981241252148
摘要

Truck crashes are generally more serious than passenger vehicle crashes, and they cause more deaths per crash worldwide per the U.S. Department of Transportation’s Fatality Analysis Reporting System. Risk assessment and factor analysis are the keys to preventing truck crashes, but research on commercial trucks has been limited. Currently, freight and insurance companies have collected extensive operating data, now making it possible to obtain deep insights into truck crashes. Vehicle trajectory data and in-vehicle monitoring data were collected for 596 large commercial trucks traveling in Shanghai, China, during 2019. A total of 22 variables were extracted, falling into three aspects: driving behavior, travel characteristics, and warning characteristics. The random forest algorithm was used to select the most important variables for further analysis. Four machine learning models and a mixed effects logistic regression model were developed to link the high-importance variables with crash risk. Results showed that the machine learning models had good predictive performance; the bagging tree model performed best overall, having achieved good performance in the majority of the metrics, with an accuracy of 96.1% and area under the characteristic curve of 0.866. The specific variables significantly associated with crash risk were: average freeway speed, average percentage of time spent speeding, driving hours, percentage of nighttime trips, percentage of freeway trips, and frequency of smoking warnings per 100 km. This study’s findings can be used to support proactive safety management for freight companies and policy formulation for insurance companies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiongxianmei发布了新的文献求助10
1秒前
阔达金鱼完成签到,获得积分10
1秒前
Nires完成签到,获得积分10
3秒前
4秒前
5秒前
润泽完成签到,获得积分10
9秒前
9秒前
企鹅QQ发布了新的文献求助10
10秒前
苻人英完成签到,获得积分10
12秒前
14秒前
15秒前
yangyang完成签到,获得积分20
15秒前
豚豚完成签到,获得积分10
17秒前
紫金发布了新的文献求助10
17秒前
18秒前
18秒前
yangyang发布了新的文献求助10
18秒前
wes完成签到,获得积分20
19秒前
曾玉婷发布了新的文献求助10
20秒前
小二郎应助追佩奇十条街采纳,获得10
21秒前
买桃子去发布了新的文献求助10
22秒前
灵巧妙芙发布了新的文献求助10
23秒前
wes发布了新的文献求助10
24秒前
24秒前
pluto应助嘎嘎采纳,获得10
28秒前
bxw发布了新的文献求助10
29秒前
科研通AI5应助晨曦采纳,获得10
32秒前
Lilith完成签到,获得积分10
32秒前
32秒前
33秒前
33秒前
善学以致用应助研友_LkKzoL采纳,获得10
35秒前
ZhouTY完成签到,获得积分10
36秒前
梓然发布了新的文献求助10
36秒前
37秒前
38秒前
AiQi发布了新的文献求助10
38秒前
39秒前
zhscu完成签到,获得积分10
40秒前
40秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3738341
求助须知:如何正确求助?哪些是违规求助? 3281845
关于积分的说明 10026652
捐赠科研通 2998667
什么是DOI,文献DOI怎么找? 1645324
邀请新用户注册赠送积分活动 782749
科研通“疑难数据库(出版商)”最低求助积分说明 749901