CT-Based AI model for predicting therapeutic outcomes in ureteral stones after single extracorporeal shock wave lithotripsy through a cohort study

医学 体外冲击波碎石术 概化理论 人工智能 机器学习 队列 支持向量机 放射科 统计 碎石术 计算机科学 内科学 数学
作者
Huancheng Yang,Wu Xiang,Weihao Liu,Zhong Yang,Tianyu Wang,W You,Baiwei Ye,Bingni Wu,Kai Wu,Haoyang Zeng,Hanlin Liu
出处
期刊:International Journal of Surgery [Elsevier]
卷期号:110 (10): 6601-6609 被引量:1
标识
DOI:10.1097/js9.0000000000001820
摘要

Objectives: Exploring the efficacy of an artificial intelligence (AI) model derived from the analysis of computed tomography (CT) images to precisely forecast the therapeutic outcomes of singular-session extracorporeal shock wave lithotripsy (ESWL) in the management of ureteral stones. Methods: A total of 317 patients diagnosed clinically with ureteral stones were included in this investigation. Unenhanced CT was administered to the participants within the initial fortnight preceding the inaugural ESWL. The internal cohort consisted of 250 individuals from a local healthcare facility, whereas the external cohort comprised 67 participants from another local medical institution. The proposed framework comprises three main components: an automated semantic segmentation model developed using 3D U-Net, a feature extractor that integrates radiomics and autoencoder techniques, and an ESWL efficacy prediction model trained with various machine learning algorithms. All participants underwent thorough postoperative follow-up examinations 4 weeks hence. The efficacy of ESWL was defined by the absence of stones or residual fragments measuring ≤2 mm in KUB X-ray assessments. Model stability and generalizability were judiciously validated through a fivefold cross-validation approach and a multicenter external test strategy. Moreover, Shapley Additive Explanations (SHAP) values for individual features were computed to elucidate the nuanced contributions of each feature to the model’s decision-making process. Results: The semantic segmentation model the authors constructed exhibited an average Dice coefficient of 0.88±0.08 on the external testing set. ESWL classifiers built using Support Vector Machine (SVM), Random Forest (RF), XGBoost (XB), and CatBoost (CB) achieved AUROC values of 0.78, 0.84, 0.85, and 0.90, respectively, on the internal validation set. For the external testing set, SVM, RF, XB, and CB predicted ESWL with AUROC values of 0.68, 0.79, 0.80, and 0.83, respectively, with the last one being the optimal algorithm. The radiomics features and auto-encoder features made significant contributions to the decision-making process of the classification model. Conclusions: This investigation unmistakably underscores the remarkable predictive prowess exhibited by a scrupulously crafted AI model using CT images to precisely anticipate the therapeutic results of a singular session of ESWL for ureteral stones.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
大抽是谁发布了新的文献求助10
1秒前
1秒前
李健的小迷弟应助公茂源采纳,获得30
1秒前
失眠的凝雁完成签到,获得积分10
1秒前
科研通AI5应助赖道之采纳,获得10
1秒前
Menand完成签到,获得积分10
2秒前
学者发布了新的文献求助10
2秒前
清新完成签到,获得积分10
2秒前
陶弈衡完成签到,获得积分10
3秒前
4秒前
4秒前
5秒前
愉快盼曼发布了新的文献求助10
7秒前
8秒前
8秒前
8秒前
nemo发布了新的文献求助10
8秒前
学术蝗虫完成签到,获得积分10
8秒前
justin完成签到,获得积分10
9秒前
西瓜啵啵完成签到,获得积分10
11秒前
小周完成签到,获得积分10
11秒前
Louki完成签到 ,获得积分10
11秒前
温暖的颜演完成签到 ,获得积分10
12秒前
yudandan@CJLU发布了新的文献求助10
13秒前
科研小民工应助_呱_采纳,获得50
13秒前
愉快盼曼完成签到,获得积分20
13秒前
研友_VZG7GZ应助小狗同志006采纳,获得10
14秒前
123完成签到,获得积分10
14秒前
13679165979发布了新的文献求助10
15秒前
温暖的钻石完成签到,获得积分10
15秒前
科研通AI5应助赖道之采纳,获得10
15秒前
16秒前
苏卿应助Eric采纳,获得10
16秒前
思源应助hhzz采纳,获得10
17秒前
红红完成签到,获得积分10
20秒前
瑶一瑶发布了新的文献求助10
20秒前
NexusExplorer应助刘鹏宇采纳,获得10
20秒前
roselau完成签到,获得积分10
20秒前
yudandan@CJLU完成签到,获得积分10
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808