亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

CT-Based AI model for predicting therapeutic outcomes in ureteral stones after single extracorporeal shock wave lithotripsy through a cohort study

医学 体外冲击波碎石术 概化理论 人工智能 机器学习 队列 支持向量机 放射科 统计 碎石术 计算机科学 内科学 数学
作者
Huancheng Yang,Wu Xiang,Weihao Liu,Zhong Yang,Tianyu Wang,W You,Baiwei Ye,Bingni Wu,Kai Wu,Haoyang Zeng,Hanlin Liu
出处
期刊:International Journal of Surgery [Elsevier]
卷期号:110 (10): 6601-6609 被引量:1
标识
DOI:10.1097/js9.0000000000001820
摘要

Objectives: Exploring the efficacy of an artificial intelligence (AI) model derived from the analysis of computed tomography (CT) images to precisely forecast the therapeutic outcomes of singular-session extracorporeal shock wave lithotripsy (ESWL) in the management of ureteral stones. Methods: A total of 317 patients diagnosed clinically with ureteral stones were included in this investigation. Unenhanced CT was administered to the participants within the initial fortnight preceding the inaugural ESWL. The internal cohort consisted of 250 individuals from a local healthcare facility, whereas the external cohort comprised 67 participants from another local medical institution. The proposed framework comprises three main components: an automated semantic segmentation model developed using 3D U-Net, a feature extractor that integrates radiomics and autoencoder techniques, and an ESWL efficacy prediction model trained with various machine learning algorithms. All participants underwent thorough postoperative follow-up examinations 4 weeks hence. The efficacy of ESWL was defined by the absence of stones or residual fragments measuring ≤2 mm in KUB X-ray assessments. Model stability and generalizability were judiciously validated through a fivefold cross-validation approach and a multicenter external test strategy. Moreover, Shapley Additive Explanations (SHAP) values for individual features were computed to elucidate the nuanced contributions of each feature to the model’s decision-making process. Results: The semantic segmentation model the authors constructed exhibited an average Dice coefficient of 0.88±0.08 on the external testing set. ESWL classifiers built using Support Vector Machine (SVM), Random Forest (RF), XGBoost (XB), and CatBoost (CB) achieved AUROC values of 0.78, 0.84, 0.85, and 0.90, respectively, on the internal validation set. For the external testing set, SVM, RF, XB, and CB predicted ESWL with AUROC values of 0.68, 0.79, 0.80, and 0.83, respectively, with the last one being the optimal algorithm. The radiomics features and auto-encoder features made significant contributions to the decision-making process of the classification model. Conclusions: This investigation unmistakably underscores the remarkable predictive prowess exhibited by a scrupulously crafted AI model using CT images to precisely anticipate the therapeutic results of a singular session of ESWL for ureteral stones.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
PKL完成签到,获得积分10
3秒前
5秒前
5秒前
CipherSage应助Moo5_zzZ采纳,获得30
8秒前
李健完成签到,获得积分10
10秒前
10秒前
汉堡包应助凉凉采纳,获得10
12秒前
shhoing应助科研通管家采纳,获得10
13秒前
我是老大应助科研通管家采纳,获得10
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
shhoing应助科研通管家采纳,获得10
13秒前
BowieHuang应助科研通管家采纳,获得10
13秒前
汉堡包应助科研通管家采纳,获得10
13秒前
13秒前
16秒前
18秒前
sparkle完成签到,获得积分10
19秒前
七慕凉应助Emma采纳,获得10
24秒前
30秒前
31秒前
36秒前
36秒前
38秒前
NexusExplorer应助Emma采纳,获得10
39秒前
曾经凌萱发布了新的文献求助10
40秒前
我要看文献完成签到 ,获得积分10
41秒前
42秒前
43秒前
槐序深巷完成签到 ,获得积分10
43秒前
小宋爱科研完成签到 ,获得积分10
45秒前
46秒前
浮游应助Emma采纳,获得10
55秒前
xin发布了新的文献求助20
56秒前
1分钟前
1分钟前
1分钟前
Moo5_zzZ发布了新的文献求助30
1分钟前
1分钟前
元气小Liu完成签到,获得积分20
1分钟前
我是谁发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5543029
求助须知:如何正确求助?哪些是违规求助? 4629142
关于积分的说明 14610941
捐赠科研通 4570445
什么是DOI,文献DOI怎么找? 2505771
邀请新用户注册赠送积分活动 1483063
关于科研通互助平台的介绍 1454364