CT-Based AI model for predicting therapeutic outcomes in ureteral stones after single extracorporeal shock wave lithotripsy through a cohort study

医学 体外冲击波碎石术 概化理论 人工智能 机器学习 队列 支持向量机 放射科 统计 碎石术 计算机科学 内科学 数学
作者
Huancheng Yang,Wu Xiang,Weihao Liu,Zhong Yang,Tianyu Wang,W You,Baiwei Ye,Bingni Wu,Kai Wu,Haoyang Zeng,Hanlin Liu
出处
期刊:International Journal of Surgery [Elsevier]
卷期号:110 (10): 6601-6609 被引量:1
标识
DOI:10.1097/js9.0000000000001820
摘要

Objectives: Exploring the efficacy of an artificial intelligence (AI) model derived from the analysis of computed tomography (CT) images to precisely forecast the therapeutic outcomes of singular-session extracorporeal shock wave lithotripsy (ESWL) in the management of ureteral stones. Methods: A total of 317 patients diagnosed clinically with ureteral stones were included in this investigation. Unenhanced CT was administered to the participants within the initial fortnight preceding the inaugural ESWL. The internal cohort consisted of 250 individuals from a local healthcare facility, whereas the external cohort comprised 67 participants from another local medical institution. The proposed framework comprises three main components: an automated semantic segmentation model developed using 3D U-Net, a feature extractor that integrates radiomics and autoencoder techniques, and an ESWL efficacy prediction model trained with various machine learning algorithms. All participants underwent thorough postoperative follow-up examinations 4 weeks hence. The efficacy of ESWL was defined by the absence of stones or residual fragments measuring ≤2 mm in KUB X-ray assessments. Model stability and generalizability were judiciously validated through a fivefold cross-validation approach and a multicenter external test strategy. Moreover, Shapley Additive Explanations (SHAP) values for individual features were computed to elucidate the nuanced contributions of each feature to the model’s decision-making process. Results: The semantic segmentation model the authors constructed exhibited an average Dice coefficient of 0.88±0.08 on the external testing set. ESWL classifiers built using Support Vector Machine (SVM), Random Forest (RF), XGBoost (XB), and CatBoost (CB) achieved AUROC values of 0.78, 0.84, 0.85, and 0.90, respectively, on the internal validation set. For the external testing set, SVM, RF, XB, and CB predicted ESWL with AUROC values of 0.68, 0.79, 0.80, and 0.83, respectively, with the last one being the optimal algorithm. The radiomics features and auto-encoder features made significant contributions to the decision-making process of the classification model. Conclusions: This investigation unmistakably underscores the remarkable predictive prowess exhibited by a scrupulously crafted AI model using CT images to precisely anticipate the therapeutic results of a singular session of ESWL for ureteral stones.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Aimee完成签到,获得积分10
2秒前
3秒前
顺心蜜粉应助shadow采纳,获得10
3秒前
4秒前
4秒前
5秒前
虚幻的青槐完成签到,获得积分20
5秒前
所所应助123mmmm采纳,获得10
5秒前
春夏秋冬完成签到 ,获得积分10
6秒前
xinjiasuki完成签到 ,获得积分10
6秒前
刮台风发布了新的文献求助10
7秒前
xjcy应助迅速弘文采纳,获得10
9秒前
虫子发布了新的文献求助10
10秒前
机灵的悒发布了新的文献求助10
11秒前
13秒前
NJ完成签到,获得积分20
13秒前
14秒前
14秒前
wanci应助一二三采纳,获得10
15秒前
ldgsd完成签到,获得积分10
16秒前
17秒前
ya发布了新的文献求助30
17秒前
沉甸甸完成签到 ,获得积分10
17秒前
18秒前
勤奋怀蕊发布了新的文献求助10
18秒前
1236应助虫子采纳,获得10
18秒前
19秒前
wild完成签到,获得积分10
19秒前
刮台风完成签到,获得积分10
20秒前
21秒前
21秒前
张张发布了新的文献求助10
24秒前
hsybzl发布了新的文献求助10
24秒前
搜集达人应助奕奕采纳,获得10
24秒前
勤奋怀蕊完成签到,获得积分10
25秒前
NexusExplorer应助李多多采纳,获得10
26秒前
康康完成签到,获得积分10
28秒前
柇素完成签到,获得积分0
29秒前
30秒前
高分求助中
Medicina di laboratorio. Logica e patologia clinica 600
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
Language injustice and social equity in EMI policies in China 500
mTOR signalling in RPGR-associated Retinitis Pigmentosa 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Geochemistry, 2nd Edition 地球化学经典教科书第二版 401
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3214498
求助须知:如何正确求助?哪些是违规求助? 2863083
关于积分的说明 8137257
捐赠科研通 2529341
什么是DOI,文献DOI怎么找? 1363623
科研通“疑难数据库(出版商)”最低求助积分说明 643860
邀请新用户注册赠送积分活动 616394