CT-Based AI model for predicting therapeutic outcomes in ureteral stones after single extracorporeal shock wave lithotripsy through a cohort study

医学 体外冲击波碎石术 概化理论 人工智能 机器学习 队列 支持向量机 放射科 统计 碎石术 计算机科学 内科学 数学
作者
Huancheng Yang,Wu Xiang,Weihao Liu,Zhong Yang,Tianyu Wang,W You,Baiwei Ye,Bingni Wu,Kai Wu,Haoyang Zeng,Hanlin Liu
出处
期刊:International Journal of Surgery [Wolters Kluwer]
卷期号:110 (10): 6601-6609 被引量:1
标识
DOI:10.1097/js9.0000000000001820
摘要

Objectives: Exploring the efficacy of an artificial intelligence (AI) model derived from the analysis of computed tomography (CT) images to precisely forecast the therapeutic outcomes of singular-session extracorporeal shock wave lithotripsy (ESWL) in the management of ureteral stones. Methods: A total of 317 patients diagnosed clinically with ureteral stones were included in this investigation. Unenhanced CT was administered to the participants within the initial fortnight preceding the inaugural ESWL. The internal cohort consisted of 250 individuals from a local healthcare facility, whereas the external cohort comprised 67 participants from another local medical institution. The proposed framework comprises three main components: an automated semantic segmentation model developed using 3D U-Net, a feature extractor that integrates radiomics and autoencoder techniques, and an ESWL efficacy prediction model trained with various machine learning algorithms. All participants underwent thorough postoperative follow-up examinations 4 weeks hence. The efficacy of ESWL was defined by the absence of stones or residual fragments measuring ≤2 mm in KUB X-ray assessments. Model stability and generalizability were judiciously validated through a fivefold cross-validation approach and a multicenter external test strategy. Moreover, Shapley Additive Explanations (SHAP) values for individual features were computed to elucidate the nuanced contributions of each feature to the model’s decision-making process. Results: The semantic segmentation model the authors constructed exhibited an average Dice coefficient of 0.88±0.08 on the external testing set. ESWL classifiers built using Support Vector Machine (SVM), Random Forest (RF), XGBoost (XB), and CatBoost (CB) achieved AUROC values of 0.78, 0.84, 0.85, and 0.90, respectively, on the internal validation set. For the external testing set, SVM, RF, XB, and CB predicted ESWL with AUROC values of 0.68, 0.79, 0.80, and 0.83, respectively, with the last one being the optimal algorithm. The radiomics features and auto-encoder features made significant contributions to the decision-making process of the classification model. Conclusions: This investigation unmistakably underscores the remarkable predictive prowess exhibited by a scrupulously crafted AI model using CT images to precisely anticipate the therapeutic results of a singular session of ESWL for ureteral stones.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小鱼儿发布了新的文献求助10
刚刚
Felix0917完成签到,获得积分10
1秒前
1秒前
JiayanLi完成签到,获得积分20
1秒前
chenchao完成签到,获得积分10
2秒前
4秒前
所所应助汎影采纳,获得10
5秒前
UHPC发布了新的文献求助10
6秒前
6秒前
华仔应助寻光人采纳,获得10
7秒前
赘婿应助罗彩明采纳,获得10
7秒前
7秒前
7秒前
xiaofengyyy发布了新的文献求助10
8秒前
我是老大应助sunyuhao采纳,获得30
9秒前
10秒前
顾矜应助sunwei采纳,获得10
11秒前
SciGPT应助现实的安波采纳,获得10
12秒前
李123发布了新的文献求助10
12秒前
李健的小迷弟应助汎影采纳,获得10
13秒前
14秒前
orixero应助Applause采纳,获得10
14秒前
15秒前
小蘑菇应助太阳采纳,获得10
15秒前
15秒前
哑巴完成签到,获得积分10
15秒前
15秒前
浮游应助科研通管家采纳,获得10
16秒前
三无发布了新的文献求助10
16秒前
桐桐应助科研通管家采纳,获得10
16秒前
英俊的铭应助科研通管家采纳,获得10
16秒前
酷波er应助科研通管家采纳,获得30
16秒前
Leanne应助科研通管家采纳,获得30
16秒前
无花果应助科研通管家采纳,获得10
16秒前
mmmmb应助科研通管家采纳,获得30
16秒前
16秒前
李燕君应助科研通管家采纳,获得30
16秒前
17秒前
dearcih完成签到,获得积分10
17秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5132036
求助须知:如何正确求助?哪些是违规求助? 4333560
关于积分的说明 13501173
捐赠科研通 4170621
什么是DOI,文献DOI怎么找? 2286445
邀请新用户注册赠送积分活动 1287303
关于科研通互助平台的介绍 1228340