CT-Based AI model for predicting therapeutic outcomes in ureteral stones after single extracorporeal shock wave lithotripsy through a cohort study

医学 体外冲击波碎石术 概化理论 人工智能 机器学习 队列 支持向量机 放射科 统计 碎石术 计算机科学 内科学 数学
作者
Huancheng Yang,Wu Xiang,Weihao Liu,Zhong Yang,Tianyu Wang,W You,Baiwei Ye,Bingni Wu,Kai Wu,Haoyang Zeng,Hanlin Liu
出处
期刊:International Journal of Surgery [Wolters Kluwer]
卷期号:110 (10): 6601-6609 被引量:1
标识
DOI:10.1097/js9.0000000000001820
摘要

Objectives: Exploring the efficacy of an artificial intelligence (AI) model derived from the analysis of computed tomography (CT) images to precisely forecast the therapeutic outcomes of singular-session extracorporeal shock wave lithotripsy (ESWL) in the management of ureteral stones. Methods: A total of 317 patients diagnosed clinically with ureteral stones were included in this investigation. Unenhanced CT was administered to the participants within the initial fortnight preceding the inaugural ESWL. The internal cohort consisted of 250 individuals from a local healthcare facility, whereas the external cohort comprised 67 participants from another local medical institution. The proposed framework comprises three main components: an automated semantic segmentation model developed using 3D U-Net, a feature extractor that integrates radiomics and autoencoder techniques, and an ESWL efficacy prediction model trained with various machine learning algorithms. All participants underwent thorough postoperative follow-up examinations 4 weeks hence. The efficacy of ESWL was defined by the absence of stones or residual fragments measuring ≤2 mm in KUB X-ray assessments. Model stability and generalizability were judiciously validated through a fivefold cross-validation approach and a multicenter external test strategy. Moreover, Shapley Additive Explanations (SHAP) values for individual features were computed to elucidate the nuanced contributions of each feature to the model’s decision-making process. Results: The semantic segmentation model the authors constructed exhibited an average Dice coefficient of 0.88±0.08 on the external testing set. ESWL classifiers built using Support Vector Machine (SVM), Random Forest (RF), XGBoost (XB), and CatBoost (CB) achieved AUROC values of 0.78, 0.84, 0.85, and 0.90, respectively, on the internal validation set. For the external testing set, SVM, RF, XB, and CB predicted ESWL with AUROC values of 0.68, 0.79, 0.80, and 0.83, respectively, with the last one being the optimal algorithm. The radiomics features and auto-encoder features made significant contributions to the decision-making process of the classification model. Conclusions: This investigation unmistakably underscores the remarkable predictive prowess exhibited by a scrupulously crafted AI model using CT images to precisely anticipate the therapeutic results of a singular session of ESWL for ureteral stones.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hello应助杰杰采纳,获得10
1秒前
春树完成签到,获得积分10
1秒前
1秒前
song完成签到,获得积分10
1秒前
SciGPT应助斯文莺采纳,获得10
1秒前
gjm完成签到,获得积分20
2秒前
tree发布了新的文献求助10
2秒前
2秒前
无限夏云完成签到,获得积分10
2秒前
3秒前
怕孤单的灵竹完成签到,获得积分10
3秒前
liuz53完成签到,获得积分10
3秒前
3秒前
4秒前
琮博完成签到,获得积分10
5秒前
科研通AI5应助凹凸曼采纳,获得30
6秒前
一汪发布了新的文献求助10
7秒前
贰鸟应助听风说采纳,获得20
7秒前
权志龙发布了新的文献求助10
8秒前
符宇新发布了新的文献求助10
8秒前
小郭完成签到,获得积分10
8秒前
深情安青应助哈哈哈采纳,获得30
9秒前
研友_V8RB68完成签到,获得积分10
9秒前
9秒前
蜡笔小新发布了新的文献求助10
10秒前
灵巧一笑发布了新的文献求助10
10秒前
醉熏的涵菱完成签到,获得积分10
11秒前
有为发布了新的文献求助10
11秒前
11秒前
12秒前
Annieqqiu完成签到 ,获得积分10
12秒前
唠叨的以柳完成签到,获得积分20
12秒前
Gu完成签到,获得积分10
13秒前
一汪完成签到,获得积分10
13秒前
斯文莺发布了新的文献求助10
14秒前
xcc完成签到,获得积分10
15秒前
Jally完成签到 ,获得积分10
15秒前
范先生完成签到,获得积分10
15秒前
16秒前
17秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987078
求助须知:如何正确求助?哪些是违规求助? 3529488
关于积分的说明 11245360
捐赠科研通 3267987
什么是DOI,文献DOI怎么找? 1804013
邀请新用户注册赠送积分活动 881270
科研通“疑难数据库(出版商)”最低求助积分说明 808650