已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Simultaneously predicting SPAD and water content in rice leaves using hyperspectral imaging with deep multi‐task regression and transfer component analysis

高光谱成像 卷积神经网络 计算机科学 任务(项目管理) 人工智能 偏最小二乘回归 学习迁移 模式识别(心理学) 领域(数学分析) 生物系统 深度学习 组分(热力学) 独立成分分析 机器学习 数学 工程类 生物 数学分析 物理 系统工程 热力学
作者
Yuanning Zhai,Jun Wang,Lei Zhou,Xincheng Zhang,Yun Ren,Hengnian Qi,Chu Zhang
出处
期刊:Journal of the Science of Food and Agriculture [Wiley]
标识
DOI:10.1002/jsfa.13853
摘要

Abstract BACKGROUND Water content and chlorophyll content are important indicators for monitoring rice growth status. Simultaneous detection of water content and chlorophyll content is of significance. Different varieties of rice show differences in phenotype, resulting in the difficulties of establishing a universal model. In this study, hyperspectral imaging was used to detect the Soil and Plant Analyzer Development (SPAD) values and water content of fresh rice leaves of three rice varieties (Jiahua 1, Xiushui 121 and Xiushui 134). RESULTS Both partial least squares regression and convolutional neural networks were used to establish single‐task and multi‐task models. Transfer component analysis (TCA) was used as transfer learning to learn the common features to achieve an approximate identical distribution between any two varieties. Single‐task and multi‐task models were also built using the features of the source domain, and these models were applied to the target domain. These results indicated that for models of each rice variety the prediction accuracy of most multi‐task models was close to that of single‐task models. As for TCA, the results showed that the single‐task model achieved good performance for all transfer learning tasks. CONCLUSION Compared with the original model, good and differentiated results were obtained for the models using features learned by TCA for both the source domain and target domain. The multi‐task models could be constructed to predict SPAD values and water content simultaneously and then transferred to another rice variety, which could improve the efficiency of model construction and realize rapid detection of rice growth indicators. © 2024 Society of Chemical Industry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
怪胎完成签到,获得积分10
刚刚
1秒前
01完成签到,获得积分10
1秒前
2秒前
苏同学完成签到,获得积分10
2秒前
sky11完成签到,获得积分10
2秒前
奋斗机器猫完成签到 ,获得积分10
3秒前
Lester完成签到 ,获得积分10
4秒前
zzzq完成签到 ,获得积分10
4秒前
5秒前
呜啦啦完成签到,获得积分10
5秒前
哈哈完成签到 ,获得积分10
5秒前
shame完成签到 ,获得积分10
5秒前
ZLN666发布了新的文献求助10
9秒前
Bi8bo发布了新的文献求助10
9秒前
微笑的手机完成签到 ,获得积分10
10秒前
小胖子发布了新的文献求助10
10秒前
Ava应助enjoy采纳,获得10
10秒前
10秒前
北克完成签到 ,获得积分10
12秒前
12秒前
可爱安白完成签到,获得积分10
12秒前
Leon Lai完成签到,获得积分10
12秒前
泡泡完成签到 ,获得积分10
12秒前
qqq完成签到,获得积分10
12秒前
fang完成签到 ,获得积分0
14秒前
郭郭完成签到 ,获得积分10
15秒前
无花果应助俊逸夜阑采纳,获得10
15秒前
ccc发布了新的文献求助10
15秒前
mbq完成签到,获得积分10
15秒前
朴实山兰完成签到 ,获得积分10
15秒前
科研狗完成签到,获得积分10
16秒前
脑子不转弯完成签到 ,获得积分10
18秒前
认真的寒香完成签到,获得积分10
18秒前
12完成签到 ,获得积分10
18秒前
20秒前
20秒前
20秒前
大模型应助Bi8bo采纳,获得10
22秒前
环走鱼尾纹完成签到 ,获得积分10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5458670
求助须知:如何正确求助?哪些是违规求助? 4564690
关于积分的说明 14296542
捐赠科研通 4489739
什么是DOI,文献DOI怎么找? 2459274
邀请新用户注册赠送积分活动 1448998
关于科研通互助平台的介绍 1424502