已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Simultaneously predicting SPAD and water content in rice leaves using hyperspectral imaging with deep multi‐task regression and transfer component analysis

高光谱成像 卷积神经网络 计算机科学 任务(项目管理) 人工智能 偏最小二乘回归 学习迁移 模式识别(心理学) 领域(数学分析) 生物系统 深度学习 组分(热力学) 独立成分分析 机器学习 数学 工程类 生物 数学分析 物理 系统工程 热力学
作者
Yuanning Zhai,Jun Wang,Lei Zhou,Xincheng Zhang,Yun Ren,Hengnian Qi,Chu Zhang
出处
期刊:Journal of the Science of Food and Agriculture [Wiley]
标识
DOI:10.1002/jsfa.13853
摘要

Abstract BACKGROUND Water content and chlorophyll content are important indicators for monitoring rice growth status. Simultaneous detection of water content and chlorophyll content is of significance. Different varieties of rice show differences in phenotype, resulting in the difficulties of establishing a universal model. In this study, hyperspectral imaging was used to detect the Soil and Plant Analyzer Development (SPAD) values and water content of fresh rice leaves of three rice varieties (Jiahua 1, Xiushui 121 and Xiushui 134). RESULTS Both partial least squares regression and convolutional neural networks were used to establish single‐task and multi‐task models. Transfer component analysis (TCA) was used as transfer learning to learn the common features to achieve an approximate identical distribution between any two varieties. Single‐task and multi‐task models were also built using the features of the source domain, and these models were applied to the target domain. These results indicated that for models of each rice variety the prediction accuracy of most multi‐task models was close to that of single‐task models. As for TCA, the results showed that the single‐task model achieved good performance for all transfer learning tasks. CONCLUSION Compared with the original model, good and differentiated results were obtained for the models using features learned by TCA for both the source domain and target domain. The multi‐task models could be constructed to predict SPAD values and water content simultaneously and then transferred to another rice variety, which could improve the efficiency of model construction and realize rapid detection of rice growth indicators. © 2024 Society of Chemical Industry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鱼羊明完成签到 ,获得积分10
1秒前
2秒前
2秒前
苏满天完成签到 ,获得积分10
3秒前
钱仙人完成签到,获得积分10
4秒前
liuyanq完成签到,获得积分10
4秒前
科研小白发布了新的文献求助10
4秒前
赵坤煊完成签到 ,获得积分10
6秒前
Husayn发布了新的文献求助10
6秒前
song发布了新的文献求助10
7秒前
ganjqly应助段盈采纳,获得20
8秒前
大胆隶完成签到,获得积分10
13秒前
科研小白完成签到,获得积分10
13秒前
U9A发布了新的文献求助20
14秒前
Zz发布了新的文献求助10
14秒前
16秒前
农夫完成签到,获得积分0
16秒前
段盈完成签到,获得积分10
18秒前
19秒前
ruochenzu完成签到,获得积分10
19秒前
意昂发布了新的文献求助10
22秒前
22秒前
无花果应助nhh采纳,获得10
22秒前
乔治哇完成签到 ,获得积分10
23秒前
ruochenzu发布了新的文献求助10
23秒前
24秒前
在水一方应助jiabaoyu采纳,获得10
25秒前
风清扬应助Steven采纳,获得30
25秒前
搜集达人应助Hawaii采纳,获得30
26秒前
bkagyin应助可耐的青雪采纳,获得10
28秒前
29秒前
Dr_Zhao发布了新的文献求助10
29秒前
554802336应助自由的小鸟采纳,获得30
30秒前
32秒前
Zz发布了新的文献求助10
33秒前
nhh发布了新的文献求助10
35秒前
jiabaoyu发布了新的文献求助10
36秒前
Hann发布了新的文献求助10
38秒前
41秒前
夏紊完成签到 ,获得积分10
41秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3976531
求助须知:如何正确求助?哪些是违规求助? 3520576
关于积分的说明 11204042
捐赠科研通 3257210
什么是DOI,文献DOI怎么找? 1798648
邀请新用户注册赠送积分活动 877835
科研通“疑难数据库(出版商)”最低求助积分说明 806555