Simultaneously predicting SPAD and water content in rice leaves using hyperspectral imaging with deep multi‐task regression and transfer component analysis

高光谱成像 卷积神经网络 计算机科学 任务(项目管理) 人工智能 偏最小二乘回归 学习迁移 模式识别(心理学) 领域(数学分析) 生物系统 深度学习 组分(热力学) 独立成分分析 机器学习 数学 工程类 生物 数学分析 物理 热力学 系统工程
作者
Yuanning Zhai,Jun Wang,Lei Zhou,Xincheng Zhang,Yun Ren,Hengnian Qi,Chu Zhang
出处
期刊:Journal of the Science of Food and Agriculture [Wiley]
标识
DOI:10.1002/jsfa.13853
摘要

Abstract BACKGROUND Water content and chlorophyll content are important indicators for monitoring rice growth status. Simultaneous detection of water content and chlorophyll content is of significance. Different varieties of rice show differences in phenotype, resulting in the difficulties of establishing a universal model. In this study, hyperspectral imaging was used to detect the Soil and Plant Analyzer Development (SPAD) values and water content of fresh rice leaves of three rice varieties (Jiahua 1, Xiushui 121 and Xiushui 134). RESULTS Both partial least squares regression and convolutional neural networks were used to establish single‐task and multi‐task models. Transfer component analysis (TCA) was used as transfer learning to learn the common features to achieve an approximate identical distribution between any two varieties. Single‐task and multi‐task models were also built using the features of the source domain, and these models were applied to the target domain. These results indicated that for models of each rice variety the prediction accuracy of most multi‐task models was close to that of single‐task models. As for TCA, the results showed that the single‐task model achieved good performance for all transfer learning tasks. CONCLUSION Compared with the original model, good and differentiated results were obtained for the models using features learned by TCA for both the source domain and target domain. The multi‐task models could be constructed to predict SPAD values and water content simultaneously and then transferred to another rice variety, which could improve the efficiency of model construction and realize rapid detection of rice growth indicators. © 2024 Society of Chemical Industry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
万能图书馆应助月亮采纳,获得10
刚刚
高是个科研狗完成签到 ,获得积分10
刚刚
1秒前
2秒前
科研通AI6应助JRZ采纳,获得10
2秒前
3秒前
知性的青筠关注了科研通微信公众号
3秒前
煎饼煎饼发布了新的文献求助10
4秒前
赫连烙完成签到,获得积分10
5秒前
5秒前
李爱国应助Aprilapple采纳,获得10
6秒前
6秒前
哈哈完成签到,获得积分10
6秒前
大模型应助Zn采纳,获得10
7秒前
谢言一发布了新的文献求助30
7秒前
7秒前
bbc完成签到,获得积分20
7秒前
科研通AI5应助hgy采纳,获得10
7秒前
吴念完成签到,获得积分20
9秒前
银子吃好的完成签到,获得积分10
9秒前
10秒前
Sept6发布了新的文献求助10
10秒前
JRZ完成签到,获得积分10
11秒前
gjq发布了新的文献求助10
12秒前
meihui完成签到 ,获得积分10
12秒前
小小元风完成签到,获得积分10
13秒前
高兴可乐发布了新的文献求助10
13秒前
13秒前
GPTea应助bbc采纳,获得30
14秒前
撒西不理发布了新的文献求助10
16秒前
annis完成签到,获得积分10
17秒前
上官若男应助默默的靳采纳,获得10
17秒前
19秒前
19秒前
19秒前
阿榛完成签到,获得积分10
20秒前
20秒前
世界和平完成签到 ,获得积分10
21秒前
22秒前
Ava应助科研通管家采纳,获得10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
2026国自然单细胞多组学大红书申报宝典 800
Research Handbook on Corporate Governance in China 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4908175
求助须知:如何正确求助?哪些是违规求助? 4184895
关于积分的说明 12995880
捐赠科研通 3951536
什么是DOI,文献DOI怎么找? 2167047
邀请新用户注册赠送积分活动 1185523
关于科研通互助平台的介绍 1092050