Simultaneously predicting SPAD and water content in rice leaves using hyperspectral imaging with deep multi‐task regression and transfer component analysis

高光谱成像 卷积神经网络 计算机科学 任务(项目管理) 人工智能 偏最小二乘回归 学习迁移 模式识别(心理学) 领域(数学分析) 生物系统 深度学习 组分(热力学) 独立成分分析 机器学习 数学 工程类 生物 数学分析 物理 系统工程 热力学
作者
Yuanning Zhai,Jun Wang,Lei Zhou,Xincheng Zhang,Yun Ren,Hengnian Qi,Chu Zhang
出处
期刊:Journal of the Science of Food and Agriculture [Wiley]
标识
DOI:10.1002/jsfa.13853
摘要

Abstract BACKGROUND Water content and chlorophyll content are important indicators for monitoring rice growth status. Simultaneous detection of water content and chlorophyll content is of significance. Different varieties of rice show differences in phenotype, resulting in the difficulties of establishing a universal model. In this study, hyperspectral imaging was used to detect the Soil and Plant Analyzer Development (SPAD) values and water content of fresh rice leaves of three rice varieties (Jiahua 1, Xiushui 121 and Xiushui 134). RESULTS Both partial least squares regression and convolutional neural networks were used to establish single‐task and multi‐task models. Transfer component analysis (TCA) was used as transfer learning to learn the common features to achieve an approximate identical distribution between any two varieties. Single‐task and multi‐task models were also built using the features of the source domain, and these models were applied to the target domain. These results indicated that for models of each rice variety the prediction accuracy of most multi‐task models was close to that of single‐task models. As for TCA, the results showed that the single‐task model achieved good performance for all transfer learning tasks. CONCLUSION Compared with the original model, good and differentiated results were obtained for the models using features learned by TCA for both the source domain and target domain. The multi‐task models could be constructed to predict SPAD values and water content simultaneously and then transferred to another rice variety, which could improve the efficiency of model construction and realize rapid detection of rice growth indicators. © 2024 Society of Chemical Industry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小胖发布了新的文献求助10
1秒前
2秒前
man完成签到 ,获得积分10
2秒前
2秒前
3秒前
科研通AI2S应助活力的初之采纳,获得10
4秒前
xzy998应助苏小福采纳,获得30
5秒前
fengqing完成签到,获得积分10
5秒前
CodeCraft应助易安采纳,获得10
6秒前
ffffffflzx666发布了新的文献求助10
6秒前
小胖完成签到,获得积分10
6秒前
科目三应助勤奋的冬萱采纳,获得10
7秒前
dablack发布了新的文献求助30
7秒前
leoan完成签到,获得积分10
7秒前
小陈发布了新的文献求助10
7秒前
坦率含双发布了新的文献求助10
10秒前
10秒前
10秒前
13秒前
14秒前
五十一完成签到 ,获得积分10
14秒前
我是老大应助月亮采纳,获得10
14秒前
NexusExplorer应助lynnleecc采纳,获得10
14秒前
研友_VZG7GZ应助科研通管家采纳,获得10
15秒前
汉堡包应助科研通管家采纳,获得10
15秒前
15秒前
在水一方应助科研通管家采纳,获得10
15秒前
CodeCraft应助科研通管家采纳,获得30
16秒前
潇然发布了新的文献求助10
16秒前
qaz完成签到,获得积分10
16秒前
Lucas应助科研通管家采纳,获得10
16秒前
手可摘星辰完成签到 ,获得积分10
16秒前
buno应助科研通管家采纳,获得10
16秒前
爆米花应助科研通管家采纳,获得10
16秒前
17秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
Orange应助科研通管家采纳,获得10
17秒前
研友_VZG7GZ应助科研通管家采纳,获得10
17秒前
Wang发布了新的文献求助10
17秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Smith-Purcell Radiation 500
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3343455
求助须知:如何正确求助?哪些是违规求助? 2970510
关于积分的说明 8644296
捐赠科研通 2650587
什么是DOI,文献DOI怎么找? 1451426
科研通“疑难数据库(出版商)”最低求助积分说明 672118
邀请新用户注册赠送积分活动 661536