亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Simultaneously predicting SPAD and water content in rice leaves using hyperspectral imaging with deep multi‐task regression and transfer component analysis

高光谱成像 卷积神经网络 计算机科学 任务(项目管理) 人工智能 偏最小二乘回归 学习迁移 模式识别(心理学) 领域(数学分析) 生物系统 深度学习 组分(热力学) 独立成分分析 机器学习 数学 工程类 生物 数学分析 物理 系统工程 热力学
作者
Yuanning Zhai,Jun Wang,Lei Zhou,Xincheng Zhang,Yun Ren,Hengnian Qi,Chu Zhang
出处
期刊:Journal of the Science of Food and Agriculture [Wiley]
标识
DOI:10.1002/jsfa.13853
摘要

Abstract BACKGROUND Water content and chlorophyll content are important indicators for monitoring rice growth status. Simultaneous detection of water content and chlorophyll content is of significance. Different varieties of rice show differences in phenotype, resulting in the difficulties of establishing a universal model. In this study, hyperspectral imaging was used to detect the Soil and Plant Analyzer Development (SPAD) values and water content of fresh rice leaves of three rice varieties (Jiahua 1, Xiushui 121 and Xiushui 134). RESULTS Both partial least squares regression and convolutional neural networks were used to establish single‐task and multi‐task models. Transfer component analysis (TCA) was used as transfer learning to learn the common features to achieve an approximate identical distribution between any two varieties. Single‐task and multi‐task models were also built using the features of the source domain, and these models were applied to the target domain. These results indicated that for models of each rice variety the prediction accuracy of most multi‐task models was close to that of single‐task models. As for TCA, the results showed that the single‐task model achieved good performance for all transfer learning tasks. CONCLUSION Compared with the original model, good and differentiated results were obtained for the models using features learned by TCA for both the source domain and target domain. The multi‐task models could be constructed to predict SPAD values and water content simultaneously and then transferred to another rice variety, which could improve the efficiency of model construction and realize rapid detection of rice growth indicators. © 2024 Society of Chemical Industry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助暴躁火龙果采纳,获得10
刚刚
wasd完成签到,获得积分20
11秒前
小蘑菇应助xxywmt采纳,获得10
17秒前
大个应助wasd采纳,获得10
19秒前
思源应助超级亿先采纳,获得30
25秒前
28秒前
xxywmt发布了新的文献求助10
33秒前
王定春完成签到 ,获得积分10
40秒前
LIFE2020完成签到 ,获得积分10
44秒前
小哈完成签到 ,获得积分10
56秒前
caca完成签到,获得积分0
56秒前
hgsgeospan完成签到,获得积分10
1分钟前
史前巨怪完成签到,获得积分10
1分钟前
屠俊豪完成签到,获得积分10
1分钟前
完美世界应助屠俊豪采纳,获得10
1分钟前
hgs完成签到,获得积分10
1分钟前
1分钟前
超级亿先发布了新的文献求助30
1分钟前
monster完成签到 ,获得积分10
2分钟前
赝品也烂漫完成签到,获得积分10
2分钟前
2分钟前
研友_8DVRzn发布了新的文献求助10
2分钟前
冷静新烟发布了新的文献求助10
2分钟前
wanci应助Chao123_采纳,获得10
2分钟前
2分钟前
Chao123_发布了新的文献求助10
2分钟前
研友_8DVRzn完成签到,获得积分10
2分钟前
沉默的谷丝完成签到,获得积分10
2分钟前
Owen应助科研通管家采纳,获得10
2分钟前
2分钟前
xuan发布了新的文献求助10
2分钟前
活力新波应助nbtzy采纳,获得10
2分钟前
Yuki完成签到 ,获得积分10
3分钟前
lyon完成签到,获得积分10
3分钟前
3分钟前
僵尸吃掉了我的脑子完成签到 ,获得积分10
3分钟前
南淮完成签到,获得积分10
3分钟前
3分钟前
彭于晏应助长度2到采纳,获得10
3分钟前
4分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5220912
求助须知:如何正确求助?哪些是违规求助? 4394171
关于积分的说明 13680226
捐赠科研通 4257205
什么是DOI,文献DOI怎么找? 2336041
邀请新用户注册赠送积分活动 1333594
关于科研通互助平台的介绍 1288112