Simultaneously predicting SPAD and water content in rice leaves using hyperspectral imaging with deep multi‐task regression and transfer component analysis

高光谱成像 卷积神经网络 计算机科学 任务(项目管理) 人工智能 偏最小二乘回归 学习迁移 模式识别(心理学) 领域(数学分析) 生物系统 深度学习 组分(热力学) 独立成分分析 机器学习 数学 工程类 生物 数学分析 物理 热力学 系统工程
作者
Yuanning Zhai,Jun Wang,Lei Zhou,Xincheng Zhang,Yun Ren,Hengnian Qi,Chu Zhang
出处
期刊:Journal of the Science of Food and Agriculture [Wiley]
标识
DOI:10.1002/jsfa.13853
摘要

Abstract BACKGROUND Water content and chlorophyll content are important indicators for monitoring rice growth status. Simultaneous detection of water content and chlorophyll content is of significance. Different varieties of rice show differences in phenotype, resulting in the difficulties of establishing a universal model. In this study, hyperspectral imaging was used to detect the Soil and Plant Analyzer Development (SPAD) values and water content of fresh rice leaves of three rice varieties (Jiahua 1, Xiushui 121 and Xiushui 134). RESULTS Both partial least squares regression and convolutional neural networks were used to establish single‐task and multi‐task models. Transfer component analysis (TCA) was used as transfer learning to learn the common features to achieve an approximate identical distribution between any two varieties. Single‐task and multi‐task models were also built using the features of the source domain, and these models were applied to the target domain. These results indicated that for models of each rice variety the prediction accuracy of most multi‐task models was close to that of single‐task models. As for TCA, the results showed that the single‐task model achieved good performance for all transfer learning tasks. CONCLUSION Compared with the original model, good and differentiated results were obtained for the models using features learned by TCA for both the source domain and target domain. The multi‐task models could be constructed to predict SPAD values and water content simultaneously and then transferred to another rice variety, which could improve the efficiency of model construction and realize rapid detection of rice growth indicators. © 2024 Society of Chemical Industry.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丢星完成签到 ,获得积分10
2秒前
3秒前
hchnb1234完成签到,获得积分10
5秒前
8秒前
飞翔的企鹅完成签到,获得积分10
10秒前
lipppfff完成签到,获得积分20
11秒前
乐乐应助drtrapezus采纳,获得10
14秒前
lipppfff发布了新的文献求助10
15秒前
31秒前
rockyshi完成签到 ,获得积分10
33秒前
xiaobai123456发布了新的文献求助10
36秒前
isedu完成签到,获得积分0
40秒前
xiaobai123456完成签到,获得积分20
45秒前
笨笨青筠完成签到 ,获得积分10
48秒前
gyy完成签到 ,获得积分10
50秒前
白华苍松发布了新的文献求助20
53秒前
无情飞薇完成签到 ,获得积分10
1分钟前
Timelapse应助白华苍松采纳,获得10
1分钟前
xy完成签到 ,获得积分10
1分钟前
木南完成签到 ,获得积分10
1分钟前
赘婿应助hk1900采纳,获得20
1分钟前
回首不再是少年完成签到,获得积分0
1分钟前
1分钟前
hk1900发布了新的文献求助20
1分钟前
sevenhill完成签到 ,获得积分0
1分钟前
xh完成签到 ,获得积分10
1分钟前
sherry完成签到 ,获得积分10
1分钟前
hk1900完成签到,获得积分20
1分钟前
ccmxigua完成签到,获得积分10
1分钟前
科研通AI6应助Alex采纳,获得10
1分钟前
天天完成签到 ,获得积分10
1分钟前
又壮了完成签到 ,获得积分10
1分钟前
不能吃太饱完成签到 ,获得积分10
1分钟前
开心惜梦完成签到,获得积分10
1分钟前
loren313完成签到,获得积分0
1分钟前
呵呵贺哈完成签到 ,获得积分10
1分钟前
dddd完成签到 ,获得积分10
1分钟前
乒坛巨人完成签到 ,获得积分0
2分钟前
2分钟前
drtrapezus发布了新的文献求助10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565171
求助须知:如何正确求助?哪些是违规求助? 4650009
关于积分的说明 14689383
捐赠科研通 4591860
什么是DOI,文献DOI怎么找? 2519371
邀请新用户注册赠送积分活动 1491920
关于科研通互助平台的介绍 1463118