Simultaneously predicting SPAD and water content in rice leaves using hyperspectral imaging with deep multi‐task regression and transfer component analysis

高光谱成像 卷积神经网络 计算机科学 任务(项目管理) 人工智能 偏最小二乘回归 学习迁移 模式识别(心理学) 领域(数学分析) 生物系统 深度学习 组分(热力学) 独立成分分析 机器学习 数学 工程类 生物 数学分析 物理 系统工程 热力学
作者
Yuanning Zhai,Jun Wang,Lei Zhou,Xincheng Zhang,Yun Ren,Hengnian Qi,Chu Zhang
出处
期刊:Journal of the Science of Food and Agriculture [Wiley]
标识
DOI:10.1002/jsfa.13853
摘要

Abstract BACKGROUND Water content and chlorophyll content are important indicators for monitoring rice growth status. Simultaneous detection of water content and chlorophyll content is of significance. Different varieties of rice show differences in phenotype, resulting in the difficulties of establishing a universal model. In this study, hyperspectral imaging was used to detect the Soil and Plant Analyzer Development (SPAD) values and water content of fresh rice leaves of three rice varieties (Jiahua 1, Xiushui 121 and Xiushui 134). RESULTS Both partial least squares regression and convolutional neural networks were used to establish single‐task and multi‐task models. Transfer component analysis (TCA) was used as transfer learning to learn the common features to achieve an approximate identical distribution between any two varieties. Single‐task and multi‐task models were also built using the features of the source domain, and these models were applied to the target domain. These results indicated that for models of each rice variety the prediction accuracy of most multi‐task models was close to that of single‐task models. As for TCA, the results showed that the single‐task model achieved good performance for all transfer learning tasks. CONCLUSION Compared with the original model, good and differentiated results were obtained for the models using features learned by TCA for both the source domain and target domain. The multi‐task models could be constructed to predict SPAD values and water content simultaneously and then transferred to another rice variety, which could improve the efficiency of model construction and realize rapid detection of rice growth indicators. © 2024 Society of Chemical Industry.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanggg发布了新的文献求助10
刚刚
歪比巴卜发布了新的文献求助10
刚刚
Owen应助刘亚玲采纳,获得10
2秒前
核桃发布了新的文献求助10
3秒前
多组学12完成签到,获得积分20
4秒前
密林小叶子完成签到,获得积分10
4秒前
美兮完成签到 ,获得积分10
4秒前
船锚在玉龙雪山完成签到,获得积分10
4秒前
sawyer完成签到,获得积分20
5秒前
6秒前
英俊的铭应助歪比巴卜采纳,获得10
7秒前
8秒前
8秒前
9秒前
10秒前
12秒前
科研通AI2S应助chenjj采纳,获得10
14秒前
14秒前
huangbing123发布了新的文献求助10
14秒前
16秒前
16秒前
简单茗茗完成签到,获得积分20
16秒前
sawyer发布了新的文献求助10
16秒前
简单7879完成签到,获得积分10
17秒前
18秒前
Nnn发布了新的文献求助10
19秒前
20秒前
20秒前
Elma发布了新的文献求助10
21秒前
情怀应助粗暴的大门采纳,获得10
21秒前
Aqua发布了新的文献求助10
21秒前
22秒前
22秒前
23秒前
Ava应助多组学12采纳,获得10
23秒前
丰富的谷菱完成签到,获得积分10
24秒前
啰友痕武次子完成签到,获得积分10
25秒前
我不爱池鱼应助GY97采纳,获得10
25秒前
科研通AI2S应助轩辕沛柔采纳,获得30
26秒前
852应助第七个星球采纳,获得10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589694
求助须知:如何正确求助?哪些是违规求助? 4674337
关于积分的说明 14793127
捐赠科研通 4628980
什么是DOI,文献DOI怎么找? 2532400
邀请新用户注册赠送积分活动 1501066
关于科研通互助平台的介绍 1468487