PROTEUS: A Physically Realistic Contrast-Enhanced Ultrasound Simulator—Part I: Numerical Methods

对比度(视觉) 模拟 计算机科学 超声波 声学 物理 人工智能
作者
Nathan Blanken,Baptiste Heiles,Alina Kuliesh,Michel Versluis,Kartik Jain,David Maresca,Guillaume Lajoinie
出处
期刊:IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tuffc.2024.3427850
摘要

Ultrasound contrast agents have been used as vascular reporters for the past 40 years. The ability to enhance vascular features in ultrasound images with engineered lipid-shelled microbubbles has enabled break-throughs such as the detection of tissue perfusion or super-resolution imaging of the microvasculature. However, advances in the field of contrast-enhanced ultra-sound are hindered by experimental variables that are difficult to control in a laboratory setting, such as complex vascular geometries, the lack of ground truth, and tissue nonlinearities. In addition, the demand for large datasets to train deep learning-based computational ultrasound imaging methods calls for the development of a simulation tool that can reproduce the physics of ultrasound wave interactions with tissues and microbubbles. Here, we introduce a physically realistic contrast-enhanced ultrasound simulator (PROTEUS) consisting of four inter-connected modules that account for blood flow dynamics in segmented vascular geometries, intravascular microbubble trajectories, ultrasound wave propagation, and nonlinear microbubble scattering. The first part of this study describes numerical methods that enabled this development. We demonstrate that PROTEUS can generate contrast-enhanced radiofrequency data in various vascular architectures across the range of medical ultrasound frequencies. PROTEUS offers a customizable framework to explore novel ideas in the field of contrast-enhanced ultrasound imaging. It is released as an open-source tool for the scientific community.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Ava应助李双艳采纳,获得10
1秒前
wfy1227完成签到,获得积分10
1秒前
Nefelibata完成签到,获得积分10
1秒前
搜集达人应助Elaine采纳,获得10
1秒前
舒适念真发布了新的文献求助10
2秒前
Clean发布了新的文献求助10
2秒前
2秒前
佰斯特威发布了新的文献求助10
2秒前
gms完成签到,获得积分10
2秒前
大力的含卉完成签到,获得积分10
3秒前
科研小白发布了新的文献求助10
3秒前
机灵又蓝完成签到 ,获得积分10
3秒前
xiaxiao应助旧梦如烟采纳,获得100
3秒前
111发布了新的文献求助10
3秒前
4秒前
5秒前
rstorz完成签到,获得积分10
5秒前
wzxxxx发布了新的文献求助10
6秒前
方方方方神完成签到,获得积分20
6秒前
WiLDPiG433完成签到,获得积分10
6秒前
7秒前
Jasper应助椰子采纳,获得10
7秒前
Stormi发布了新的文献求助10
7秒前
jym发布了新的文献求助10
7秒前
7秒前
Maigret完成签到,获得积分10
8秒前
两飞飞完成签到,获得积分10
8秒前
8秒前
韭菜盒子发布了新的文献求助10
9秒前
ximu完成签到,获得积分20
9秒前
CLN完成签到,获得积分10
9秒前
SciGPT应助单薄凌蝶采纳,获得50
10秒前
10秒前
111完成签到,获得积分10
10秒前
小马甲应助117采纳,获得10
10秒前
甜甜的猫咪完成签到,获得积分10
10秒前
10秒前
66应助马佳凯采纳,获得10
10秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740