Comparative Accuracy of Barrett Integrated Keratometry Toric Calculator With Predicted Versus Measured Posterior Corneal Astigmatism

角膜曲率计 眼科 医学 超声乳化术 散光 屈光度 均方预测误差 列线图 数学 算法 视力 光学 内科学 物理
作者
Xiaotong Yang,Yufan Yin,Sheng Wang,Xiaomei Bai,Yuanfeng Jiang,Shaochong Bu
出处
期刊:Journal of Refractive Surgery [SLACK, Inc.]
卷期号:40 (7)
标识
DOI:10.3928/1081597x-20240514-04
摘要

Purpose: To compare the prediction accuracy of the Barrett toric calculator using standard or integrated keratometry (IK) mode in combination with predicted or measured posterior corneal astigmatism (PCA) in a group of patients with cataract implanted with non-toric IOLs. Methods: In this retrospective clinical cohort study, the medical records of patients with age-related cataract who underwent phacoemulsification with the implantation of an aspheric monofocal IOL were reviewed. Four methods, including standard keratometry with predicted PCA (PPCA), IK combined with predicted PCA (IK-PPCA), and IK combined with measured PCA derived from IOLMaster 700 (Carl Zeiss Meditec AG) or CASIA2 (Tomey) (IK-MMPCA or IK-CMPCA), were applied to the Barrett toric calculator to calculate the predicted residual astigmatism. The mean absolute prediction error (MAPE), centroid of the prediction error, and proportion of eyes within the prediction error of ±0.50, ±0.75, and ±1.00 diopters (D) were all ciphered out from the four methods, respectively. Results: Data from 129 eyes of 129 patients were included in this study. The MAPE of the IK-PPCA method (0.57 ± 0.36 D) was significantly smaller than that of the PPCA (0.62 ± 0.38 D) and IK-CMPCA (0.63 ± 0.46 D) methods ( P = .048 and .014, respectively). There were no significant differences in the centroid vectors of prediction errors and predictability rates among the four methods (all P > .05). Conclusions: In the current version of the Barrett toric calculator, the predictive accuracy of the IK mode incorporating PPCA was slightly superior to using the standard keratometry mode or incorporating MPCA. [ J Refract Surg . 2024;40(7):e453–e459.]
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
万里完成签到,获得积分10
1秒前
2秒前
wzf123456发布了新的文献求助10
2秒前
贪玩黑米应助蓬蒿人采纳,获得10
2秒前
cruise发布了新的文献求助10
3秒前
4秒前
4秒前
亦74发布了新的文献求助10
4秒前
ali发布了新的文献求助10
4秒前
5秒前
5秒前
5秒前
7秒前
华仔应助WUHUDASM采纳,获得10
7秒前
Jasper应助乌云乌云快走开采纳,获得10
7秒前
Gyzzz发布了新的文献求助10
7秒前
Xenia完成签到,获得积分10
7秒前
8秒前
Yunis完成签到,获得积分10
8秒前
9秒前
9秒前
g0123发布了新的文献求助10
9秒前
杨璐骏发布了新的文献求助10
9秒前
Akim应助Albert采纳,获得100
9秒前
斯文败类应助盛夏如花采纳,获得100
10秒前
木子秀完成签到,获得积分10
10秒前
谨慎的雨灵完成签到,获得积分10
10秒前
10秒前
11秒前
xuan发布了新的文献求助10
11秒前
cruise发布了新的文献求助10
11秒前
坚持发布了新的文献求助10
12秒前
13秒前
852应助jin采纳,获得10
14秒前
昏睡的乐菱完成签到,获得积分10
15秒前
爱撒娇的妙芹完成签到,获得积分10
15秒前
ali完成签到,获得积分10
15秒前
BLDYT完成签到,获得积分10
16秒前
16秒前
子凯发布了新的文献求助10
17秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Diabetes: miniguías Asklepios 800
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3470540
求助须知:如何正确求助?哪些是违规求助? 3063510
关于积分的说明 9083726
捐赠科研通 2753934
什么是DOI,文献DOI怎么找? 1511152
邀请新用户注册赠送积分活动 698303
科研通“疑难数据库(出版商)”最低求助积分说明 698178