HADNet: A Novel Lightweight Approach for Abnormal Sound Detection on Highway Based on 1D Convolutional Neural Network and Multi-Head Self-Attention Mechanism

卷积神经网络 机制(生物学) 主管(地质) 计算机科学 声音(地理) 人工神经网络 人工智能 声学 地质学 物理 量子力学 地貌学
作者
Liang Cong,Qian Chen,Qiran Li,Qingnan Wang,Kang Zhao,Jihui Tu,Ammar Jafaripournimchahi
出处
期刊:Electronics [MDPI AG]
卷期号:13 (21): 4229-4229
标识
DOI:10.3390/electronics13214229
摘要

Video surveillance is an effective tool for traffic management and safety, but it may face challenges in extreme weather, low visibility, areas outside the monitoring field of view, or during nighttime conditions. Therefore, abnormal sound detection is used in traffic management and safety as an auxiliary tool to complement video surveillance. In this paper, a novel lightweight method for abnormal sound detection based on 1D CNN and Multi-Head Self-Attention Mechanism on the embedded system is proposed, which is named HADNet. First, 1D CNN is employed for local feature extraction, which minimizes information loss from the audio signal during time-frequency conversion and reduces computational complexity. Second, the proposed block based on Multi-Head Self-Attention Mechanism not only effectively mitigates the issue of disappearing gradients, but also enhances detection accuracy. Finally, the joint loss function is employed to detect abnormal audio. This choice helps address issues related to unbalanced training data and class overlap, thereby improving model performance on imbalanced datasets. The proposed HADNet method was evaluated on the MIVIA Road Events and UrbanSound8K datasets. The results demonstrate that the proposed method for abnormal audio detection on embedded systems achieves high accuracy of 99.6% and an efficient detection time of 0.06 s. This approach proves to be robust and suitable for practical applications in traffic management and safety. By addressing the challenges posed by traditional video surveillance methods, HADNet offers a valuable and complementary solution for enhancing safety measures in diverse traffic conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小白完成签到 ,获得积分10
1秒前
江枫渔火VC完成签到 ,获得积分10
2秒前
哈哈哈完成签到 ,获得积分10
3秒前
wx2360ouc完成签到 ,获得积分10
5秒前
jasmineee完成签到 ,获得积分10
5秒前
小刘爱科研完成签到,获得积分10
5秒前
追寻如雪完成签到 ,获得积分10
7秒前
yue完成签到 ,获得积分10
10秒前
只爱三十四画完成签到,获得积分10
11秒前
杨飞完成签到,获得积分10
14秒前
Silence完成签到 ,获得积分10
14秒前
14秒前
Ruby于完成签到,获得积分10
15秒前
刘志萍完成签到 ,获得积分10
15秒前
七子完成签到,获得积分10
16秒前
星空完成签到 ,获得积分10
16秒前
lilac完成签到,获得积分10
17秒前
张一完成签到,获得积分10
18秒前
谦让碧菡完成签到,获得积分10
19秒前
黄油可颂完成签到 ,获得积分10
19秒前
zzx396完成签到,获得积分0
21秒前
顾矜应助Ruby于采纳,获得50
22秒前
月亮啊完成签到 ,获得积分10
24秒前
晓铭应助科研通管家采纳,获得10
26秒前
小马甲应助科研通管家采纳,获得10
26秒前
orixero应助科研通管家采纳,获得10
26秒前
媛媛完成签到 ,获得积分10
26秒前
今后应助科研通管家采纳,获得10
26秒前
科研通AI6应助科研通管家采纳,获得10
26秒前
顾矜应助科研通管家采纳,获得10
26秒前
墨痕mohen完成签到,获得积分0
26秒前
Muhi完成签到,获得积分10
26秒前
修仙中应助科研通管家采纳,获得10
26秒前
科研通AI6应助科研通管家采纳,获得10
26秒前
xfxzy应助科研通管家采纳,获得10
27秒前
风中冰香应助科研通管家采纳,获得10
27秒前
完美世界应助科研通管家采纳,获得10
27秒前
27秒前
佰斯特威应助科研通管家采纳,获得10
27秒前
27秒前
高分求助中
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Questioning sequences in the classroom 700
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5378458
求助须知:如何正确求助?哪些是违规求助? 4502884
关于积分的说明 14014658
捐赠科研通 4411499
什么是DOI,文献DOI怎么找? 2423316
邀请新用户注册赠送积分活动 1416206
关于科研通互助平台的介绍 1393644