HADNet: A Novel Lightweight Approach for Abnormal Sound Detection on Highway Based on 1D Convolutional Neural Network and Multi-Head Self-Attention Mechanism

卷积神经网络 机制(生物学) 主管(地质) 计算机科学 声音(地理) 人工神经网络 人工智能 声学 地质学 物理 量子力学 地貌学
作者
Liang Cong,Qian Chen,Qiran Li,Qingnan Wang,Kang Zhao,Jihui Tu,Ammar Jafaripournimchahi
出处
期刊:Electronics [MDPI AG]
卷期号:13 (21): 4229-4229
标识
DOI:10.3390/electronics13214229
摘要

Video surveillance is an effective tool for traffic management and safety, but it may face challenges in extreme weather, low visibility, areas outside the monitoring field of view, or during nighttime conditions. Therefore, abnormal sound detection is used in traffic management and safety as an auxiliary tool to complement video surveillance. In this paper, a novel lightweight method for abnormal sound detection based on 1D CNN and Multi-Head Self-Attention Mechanism on the embedded system is proposed, which is named HADNet. First, 1D CNN is employed for local feature extraction, which minimizes information loss from the audio signal during time-frequency conversion and reduces computational complexity. Second, the proposed block based on Multi-Head Self-Attention Mechanism not only effectively mitigates the issue of disappearing gradients, but also enhances detection accuracy. Finally, the joint loss function is employed to detect abnormal audio. This choice helps address issues related to unbalanced training data and class overlap, thereby improving model performance on imbalanced datasets. The proposed HADNet method was evaluated on the MIVIA Road Events and UrbanSound8K datasets. The results demonstrate that the proposed method for abnormal audio detection on embedded systems achieves high accuracy of 99.6% and an efficient detection time of 0.06 s. This approach proves to be robust and suitable for practical applications in traffic management and safety. By addressing the challenges posed by traditional video surveillance methods, HADNet offers a valuable and complementary solution for enhancing safety measures in diverse traffic conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
ashore发布了新的文献求助10
1秒前
1秒前
斑ban发布了新的文献求助10
2秒前
2秒前
Nito发布了新的文献求助10
3秒前
汉堡包应助鱼鱼采纳,获得10
4秒前
zry完成签到,获得积分20
5秒前
蜀黍完成签到 ,获得积分10
9秒前
kk119完成签到,获得积分10
10秒前
12秒前
打打应助南边的海采纳,获得10
12秒前
zry发布了新的文献求助10
13秒前
纪元龙完成签到,获得积分10
14秒前
15秒前
乐乐应助科研通管家采纳,获得10
19秒前
lalala应助科研通管家采纳,获得10
19秒前
汉堡包应助科研通管家采纳,获得10
19秒前
今后应助科研通管家采纳,获得10
19秒前
lalala应助科研通管家采纳,获得10
19秒前
19秒前
小蘑菇应助科研通管家采纳,获得10
19秒前
慕青应助科研通管家采纳,获得30
19秒前
深情安青应助科研通管家采纳,获得30
19秒前
清平道人应助科研通管家采纳,获得30
19秒前
小二郎应助科研通管家采纳,获得10
19秒前
maox1aoxin应助科研通管家采纳,获得30
20秒前
汉堡包应助科研通管家采纳,获得10
20秒前
yyymmma应助科研通管家采纳,获得10
20秒前
双黄应助科研通管家采纳,获得10
20秒前
20秒前
心灵美尔槐完成签到,获得积分10
20秒前
陆文发布了新的文献求助10
20秒前
nenoaowu发布了新的文献求助10
22秒前
22秒前
23秒前
Jasper应助zs采纳,获得10
24秒前
妖娃娃给不予傻瓜论长短的求助进行了留言
25秒前
29秒前
英俊的铭应助小姚姚采纳,获得10
30秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
The Vladimirov Diaries [by Peter Vladimirov] 600
Development of general formulas for bolted flanges, by E.O. Waters [and others] 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3265274
求助须知:如何正确求助?哪些是违规求助? 2905225
关于积分的说明 8333141
捐赠科研通 2575611
什么是DOI,文献DOI怎么找? 1399951
科研通“疑难数据库(出版商)”最低求助积分说明 654613
邀请新用户注册赠送积分活动 633471