HADNet: A Novel Lightweight Approach for Abnormal Sound Detection on Highway Based on 1D Convolutional Neural Network and Multi-Head Self-Attention Mechanism

卷积神经网络 机制(生物学) 主管(地质) 计算机科学 声音(地理) 人工神经网络 人工智能 声学 地质学 物理 量子力学 地貌学
作者
Liang Cong,Qian Chen,Qiran Li,Qingnan Wang,Kang Zhao,Jihui Tu,Ammar Jafaripournimchahi
出处
期刊:Electronics [MDPI AG]
卷期号:13 (21): 4229-4229
标识
DOI:10.3390/electronics13214229
摘要

Video surveillance is an effective tool for traffic management and safety, but it may face challenges in extreme weather, low visibility, areas outside the monitoring field of view, or during nighttime conditions. Therefore, abnormal sound detection is used in traffic management and safety as an auxiliary tool to complement video surveillance. In this paper, a novel lightweight method for abnormal sound detection based on 1D CNN and Multi-Head Self-Attention Mechanism on the embedded system is proposed, which is named HADNet. First, 1D CNN is employed for local feature extraction, which minimizes information loss from the audio signal during time-frequency conversion and reduces computational complexity. Second, the proposed block based on Multi-Head Self-Attention Mechanism not only effectively mitigates the issue of disappearing gradients, but also enhances detection accuracy. Finally, the joint loss function is employed to detect abnormal audio. This choice helps address issues related to unbalanced training data and class overlap, thereby improving model performance on imbalanced datasets. The proposed HADNet method was evaluated on the MIVIA Road Events and UrbanSound8K datasets. The results demonstrate that the proposed method for abnormal audio detection on embedded systems achieves high accuracy of 99.6% and an efficient detection time of 0.06 s. This approach proves to be robust and suitable for practical applications in traffic management and safety. By addressing the challenges posed by traditional video surveillance methods, HADNet offers a valuable and complementary solution for enhancing safety measures in diverse traffic conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小橘子完成签到 ,获得积分10
刚刚
刚刚
zjy完成签到,获得积分10
刚刚
脑洞疼应助平淡凡柔采纳,获得10
刚刚
1秒前
熊佳璇发布了新的文献求助10
1秒前
Owen应助xxm采纳,获得10
2秒前
赘婿应助醉眠采纳,获得10
2秒前
3秒前
orixero应助Lucia采纳,获得10
3秒前
田様应助Genius采纳,获得10
3秒前
乐乐应助青筠采纳,获得10
3秒前
Karna发布了新的文献求助10
5秒前
李志伟完成签到,获得积分10
6秒前
dongdoctor完成签到 ,获得积分10
6秒前
世界和平发布了新的文献求助10
7秒前
传奇3应助张晴晴采纳,获得10
7秒前
7秒前
量子星尘发布了新的文献求助10
8秒前
辉辉完成签到 ,获得积分10
8秒前
英俊的铭应助简单花花采纳,获得10
8秒前
a1423072381完成签到,获得积分20
9秒前
左耳钉应助世界和平采纳,获得10
11秒前
浮游应助世界和平采纳,获得10
11秒前
浮游应助怡然的怀莲采纳,获得10
12秒前
yeapyeye发布了新的文献求助10
13秒前
13秒前
14秒前
少7一点8发布了新的文献求助20
15秒前
16秒前
Genius发布了新的文献求助10
17秒前
18秒前
18秒前
20秒前
20秒前
我不得依较完成签到,获得积分10
20秒前
特独斩发布了新的文献求助10
21秒前
赘婿应助Kaleem采纳,获得10
21秒前
ZXR完成签到 ,获得积分10
21秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5425164
求助须知:如何正确求助?哪些是违规求助? 4539269
关于积分的说明 14166518
捐赠科研通 4456411
什么是DOI,文献DOI怎么找? 2444204
邀请新用户注册赠送积分活动 1435224
关于科研通互助平台的介绍 1412564