HADNet: A Novel Lightweight Approach for Abnormal Sound Detection on Highway Based on 1D Convolutional Neural Network and Multi-Head Self-Attention Mechanism

卷积神经网络 机制(生物学) 主管(地质) 计算机科学 声音(地理) 人工神经网络 人工智能 声学 地质学 物理 量子力学 地貌学
作者
Liang Cong,Qian Chen,Qiran Li,Qingnan Wang,Kang Zhao,Jihui Tu,Ammar Jafaripournimchahi
出处
期刊:Electronics [MDPI AG]
卷期号:13 (21): 4229-4229
标识
DOI:10.3390/electronics13214229
摘要

Video surveillance is an effective tool for traffic management and safety, but it may face challenges in extreme weather, low visibility, areas outside the monitoring field of view, or during nighttime conditions. Therefore, abnormal sound detection is used in traffic management and safety as an auxiliary tool to complement video surveillance. In this paper, a novel lightweight method for abnormal sound detection based on 1D CNN and Multi-Head Self-Attention Mechanism on the embedded system is proposed, which is named HADNet. First, 1D CNN is employed for local feature extraction, which minimizes information loss from the audio signal during time-frequency conversion and reduces computational complexity. Second, the proposed block based on Multi-Head Self-Attention Mechanism not only effectively mitigates the issue of disappearing gradients, but also enhances detection accuracy. Finally, the joint loss function is employed to detect abnormal audio. This choice helps address issues related to unbalanced training data and class overlap, thereby improving model performance on imbalanced datasets. The proposed HADNet method was evaluated on the MIVIA Road Events and UrbanSound8K datasets. The results demonstrate that the proposed method for abnormal audio detection on embedded systems achieves high accuracy of 99.6% and an efficient detection time of 0.06 s. This approach proves to be robust and suitable for practical applications in traffic management and safety. By addressing the challenges posed by traditional video surveillance methods, HADNet offers a valuable and complementary solution for enhancing safety measures in diverse traffic conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上好佳发布了新的文献求助10
1秒前
sensen完成签到,获得积分10
1秒前
1秒前
大力蚂蚁完成签到,获得积分10
2秒前
2秒前
科研通AI6应助老王采纳,获得10
2秒前
协和_子鱼完成签到,获得积分0
2秒前
3秒前
小郭发布了新的文献求助10
4秒前
Ava应助punch采纳,获得10
5秒前
rosid完成签到,获得积分10
5秒前
zhuangbaobao发布了新的文献求助10
6秒前
荷兰香猪发布了新的文献求助10
6秒前
6秒前
善学以致用应助北极星采纳,获得10
7秒前
bkagyin应助jjjjjjj采纳,获得10
7秒前
席茹妖完成签到,获得积分10
7秒前
万能图书馆应助小辛采纳,获得10
8秒前
8秒前
8秒前
负责的皮卡丘应助麦子采纳,获得10
8秒前
9秒前
科研通AI6应助淡定的以寒采纳,获得10
11秒前
11秒前
11秒前
告元完成签到,获得积分10
11秒前
BTW发布了新的文献求助10
12秒前
12秒前
mang完成签到 ,获得积分10
12秒前
guo发布了新的文献求助10
12秒前
12秒前
13秒前
科目三应助拼搏的帆布鞋采纳,获得10
13秒前
小灰灰完成签到,获得积分10
14秒前
汉堡包应助小奇采纳,获得10
14秒前
14秒前
14秒前
15秒前
Lamis完成签到 ,获得积分10
15秒前
tgoutgou完成签到,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Alloy Phase Diagrams 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5420251
求助须知:如何正确求助?哪些是违规求助? 4535385
关于积分的说明 14149881
捐赠科研通 4452462
什么是DOI,文献DOI怎么找? 2442152
邀请新用户注册赠送积分活动 1433648
关于科研通互助平台的介绍 1410945