HADNet: A Novel Lightweight Approach for Abnormal Sound Detection on Highway Based on 1D Convolutional Neural Network and Multi-Head Self-Attention Mechanism

卷积神经网络 机制(生物学) 主管(地质) 计算机科学 声音(地理) 人工神经网络 人工智能 声学 地质学 物理 量子力学 地貌学
作者
Liang Cong,Qian Chen,Qiran Li,Qingnan Wang,Kang Zhao,Jihui Tu,Ammar Jafaripournimchahi
出处
期刊:Electronics [MDPI AG]
卷期号:13 (21): 4229-4229
标识
DOI:10.3390/electronics13214229
摘要

Video surveillance is an effective tool for traffic management and safety, but it may face challenges in extreme weather, low visibility, areas outside the monitoring field of view, or during nighttime conditions. Therefore, abnormal sound detection is used in traffic management and safety as an auxiliary tool to complement video surveillance. In this paper, a novel lightweight method for abnormal sound detection based on 1D CNN and Multi-Head Self-Attention Mechanism on the embedded system is proposed, which is named HADNet. First, 1D CNN is employed for local feature extraction, which minimizes information loss from the audio signal during time-frequency conversion and reduces computational complexity. Second, the proposed block based on Multi-Head Self-Attention Mechanism not only effectively mitigates the issue of disappearing gradients, but also enhances detection accuracy. Finally, the joint loss function is employed to detect abnormal audio. This choice helps address issues related to unbalanced training data and class overlap, thereby improving model performance on imbalanced datasets. The proposed HADNet method was evaluated on the MIVIA Road Events and UrbanSound8K datasets. The results demonstrate that the proposed method for abnormal audio detection on embedded systems achieves high accuracy of 99.6% and an efficient detection time of 0.06 s. This approach proves to be robust and suitable for practical applications in traffic management and safety. By addressing the challenges posed by traditional video surveillance methods, HADNet offers a valuable and complementary solution for enhancing safety measures in diverse traffic conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
悦耳听芹完成签到,获得积分10
1秒前
Liu发布了新的文献求助30
1秒前
爆米花应助暴躁的火采纳,获得10
1秒前
1秒前
2秒前
2秒前
2秒前
ZeroSer完成签到,获得积分20
3秒前
4秒前
天天快乐应助Spy_R采纳,获得10
5秒前
玛卡巴卡发布了新的文献求助10
5秒前
hu123完成签到,获得积分10
5秒前
我是老大应助自觉羊采纳,获得10
5秒前
勤奋山晴完成签到,获得积分10
6秒前
青苔发布了新的文献求助30
7秒前
怕孤单的幻枫完成签到 ,获得积分20
7秒前
Orange应助飞快的以冬采纳,获得10
7秒前
xiaoxiao完成签到,获得积分10
7秒前
7秒前
Owen应助为喵驾车的月亮采纳,获得10
8秒前
秦秦发布了新的文献求助10
8秒前
李文俊是我太孙完成签到,获得积分10
8秒前
典雅的静发布了新的文献求助10
8秒前
Smile发布了新的文献求助10
8秒前
luhui发布了新的文献求助10
8秒前
8秒前
8秒前
echo完成签到,获得积分10
9秒前
9秒前
9秒前
10秒前
单纯一笑发布了新的文献求助10
11秒前
Criminology34应助dali采纳,获得10
11秒前
情怀应助柚子采纳,获得10
12秒前
12秒前
yiy37完成签到,获得积分10
12秒前
李健应助文静宛亦采纳,获得10
12秒前
紧张的绿茶完成签到,获得积分10
13秒前
fay发布了新的文献求助10
13秒前
激动的煎饼完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Machine Learning for Polymer Informatics 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5409732
求助须知:如何正确求助?哪些是违规求助? 4527293
关于积分的说明 14110056
捐赠科研通 4441780
什么是DOI,文献DOI怎么找? 2437589
邀请新用户注册赠送积分活动 1429594
关于科研通互助平台的介绍 1407723