Adapting Job Recommendations to User Preference Drift with Behavioral-Semantic Fusion Learning

计算机科学 偏爱 聚类分析 稳健性(进化) 推荐系统 机器学习 会话(web分析) 匹配(统计) 人工智能 语义匹配 情报检索 万维网 经济 微观经济学 化学 统计 基因 生物化学 数学
作者
Xiao Han,Chen Zhu,Xiao Hu,Chuan Qin,Xiangyu Zhao,Hengshu Zhu
标识
DOI:10.1145/3637528.3671759
摘要

Job recommender systems are crucial for aligning job opportunities with job-seekers in online job-seeking. However, users tend to adjust their job preferences to secure employment opportunities continually, which limits the performance of job recommendations. The inherent frequency of preference drift poses a challenge to promptly and precisely capture user preferences. To address this issue, we propose a novel session-based framework, BISTRO, to timely model user preference through fusion learning of semantic and behavioral information. Specifically, BISTRO is composed of three stages: 1) coarse-grained semantic clustering, 2) fine-grained job preference extraction, and 3) personalized top-$k$ job recommendation. Initially, BISTRO segments the user interaction sequence into sessions and leverages session-based semantic clustering to achieve broad identification of person-job matching. Subsequently, we design a hypergraph wavelet learning method to capture the nuanced job preference drift. To mitigate the effect of noise in interactions caused by frequent preference drift, we innovatively propose an adaptive wavelet filtering technique to remove noisy interaction. Finally, a recurrent neural network is utilized to analyze session-based interaction for inferring personalized preferences. Extensive experiments on three real-world offline recruitment datasets demonstrate the significant performances of our framework. Significantly, BISTRO also excels in online experiments, affirming its effectiveness in live recruitment settings. This dual success underscores the robustness and adaptability of BISTRO. The source code is available at https://github.com/Applied-Machine-Learning-Lab/BISTRO.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我爱陶子完成签到 ,获得积分10
2秒前
执着凝竹关注了科研通微信公众号
2秒前
小吴完成签到,获得积分10
3秒前
3秒前
bingo完成签到,获得积分10
4秒前
小蘑菇应助酷酷巧蟹采纳,获得30
5秒前
bingo发布了新的文献求助10
7秒前
7秒前
7秒前
ypeng完成签到,获得积分10
8秒前
十七完成签到 ,获得积分10
9秒前
10秒前
zhangyulu发布了新的文献求助10
10秒前
10秒前
Yao发布了新的文献求助10
10秒前
01关闭了01文献求助
12秒前
樊炜静完成签到,获得积分10
12秒前
Bai发布了新的文献求助10
13秒前
13秒前
angel完成签到,获得积分20
13秒前
小吴发布了新的文献求助10
13秒前
橙浅完成签到,获得积分10
14秒前
tongcc发布了新的文献求助10
14秒前
14秒前
15秒前
15秒前
16秒前
科研通AI5应助Horizon采纳,获得30
16秒前
17秒前
酷酷巧蟹发布了新的文献求助30
17秒前
不要辣椒发布了新的文献求助30
18秒前
vicky发布了新的文献求助10
19秒前
为医消得人憔悴完成签到 ,获得积分10
19秒前
PhH发布了新的文献求助10
20秒前
20秒前
22秒前
慕青应助秦晋采纳,获得10
22秒前
xhx完成签到,获得积分10
22秒前
24秒前
冷傲千秋发布了新的文献求助10
25秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
The Moiseyev Dance Company Tours America: "Wholesome" Comfort during a Cold War 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3980258
求助须知:如何正确求助?哪些是违规求助? 3524227
关于积分的说明 11220452
捐赠科研通 3261658
什么是DOI,文献DOI怎么找? 1800882
邀请新用户注册赠送积分活动 879359
科研通“疑难数据库(出版商)”最低求助积分说明 807234