Adapting Job Recommendations to User Preference Drift with Behavioral-Semantic Fusion Learning

计算机科学 偏爱 聚类分析 稳健性(进化) 推荐系统 机器学习 会话(web分析) 匹配(统计) 人工智能 语义匹配 情报检索 万维网 经济 微观经济学 化学 统计 基因 生物化学 数学
作者
Xiao Han,Chen Zhu,Xiao Hu,Chuan Qin,Xiangyu Zhao,Hengshu Zhu
标识
DOI:10.1145/3637528.3671759
摘要

Job recommender systems are crucial for aligning job opportunities with job-seekers in online job-seeking. However, users tend to adjust their job preferences to secure employment opportunities continually, which limits the performance of job recommendations. The inherent frequency of preference drift poses a challenge to promptly and precisely capture user preferences. To address this issue, we propose a novel session-based framework, BISTRO, to timely model user preference through fusion learning of semantic and behavioral information. Specifically, BISTRO is composed of three stages: 1) coarse-grained semantic clustering, 2) fine-grained job preference extraction, and 3) personalized top-$k$ job recommendation. Initially, BISTRO segments the user interaction sequence into sessions and leverages session-based semantic clustering to achieve broad identification of person-job matching. Subsequently, we design a hypergraph wavelet learning method to capture the nuanced job preference drift. To mitigate the effect of noise in interactions caused by frequent preference drift, we innovatively propose an adaptive wavelet filtering technique to remove noisy interaction. Finally, a recurrent neural network is utilized to analyze session-based interaction for inferring personalized preferences. Extensive experiments on three real-world offline recruitment datasets demonstrate the significant performances of our framework. Significantly, BISTRO also excels in online experiments, affirming its effectiveness in live recruitment settings. This dual success underscores the robustness and adaptability of BISTRO. The source code is available at https://github.com/Applied-Machine-Learning-Lab/BISTRO.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
舒适的海雪关注了科研通微信公众号
刚刚
刚刚
Fung完成签到,获得积分10
刚刚
陈末应助zhq采纳,获得10
刚刚
SCI发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
1秒前
车窗外完成签到,获得积分10
1秒前
huhuhuuh完成签到,获得积分10
1秒前
2秒前
雪花飘飘完成签到,获得积分10
2秒前
kong完成签到,获得积分10
2秒前
wen发布了新的文献求助10
3秒前
3秒前
栗子完成签到,获得积分10
3秒前
Alicia完成签到,获得积分10
3秒前
太叔笑萍完成签到,获得积分10
4秒前
语物完成签到,获得积分10
4秒前
Jian完成签到 ,获得积分10
4秒前
wen完成签到,获得积分10
4秒前
陈末应助gqb采纳,获得10
5秒前
5秒前
6秒前
在水一方应助没有你沉采纳,获得10
6秒前
6秒前
科研通AI6应助andy采纳,获得10
7秒前
7秒前
7秒前
桐桐应助J_C_Van采纳,获得10
7秒前
长小右完成签到,获得积分10
7秒前
HooBea完成签到 ,获得积分10
7秒前
姆姆完成签到,获得积分10
7秒前
8秒前
啦啦啦发布了新的文献求助10
8秒前
8秒前
彭于晏应助小时候采纳,获得10
9秒前
9秒前
JamesPei应助huangt采纳,获得10
9秒前
9秒前
gyh关闭了gyh文献求助
9秒前
Hello应助jinjin采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Item Response Theory 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 921
Identifying dimensions of interest to support learning in disengaged students: the MINE project 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5427891
求助须知:如何正确求助?哪些是违规求助? 4541819
关于积分的说明 14178455
捐赠科研通 4459383
什么是DOI,文献DOI怎么找? 2445345
邀请新用户注册赠送积分活动 1436513
关于科研通互助平台的介绍 1413844