Adapting Job Recommendations to User Preference Drift with Behavioral-Semantic Fusion Learning

计算机科学 偏爱 聚类分析 稳健性(进化) 推荐系统 机器学习 会话(web分析) 匹配(统计) 人工智能 语义匹配 情报检索 万维网 生物化学 化学 统计 数学 经济 基因 微观经济学
作者
Xiao Han,Chen Zhu,Xiao Hu,Chuan Qin,Xiangyu Zhao,Hengshu Zhu
标识
DOI:10.1145/3637528.3671759
摘要

Job recommender systems are crucial for aligning job opportunities with job-seekers in online job-seeking. However, users tend to adjust their job preferences to secure employment opportunities continually, which limits the performance of job recommendations. The inherent frequency of preference drift poses a challenge to promptly and precisely capture user preferences. To address this issue, we propose a novel session-based framework, BISTRO, to timely model user preference through fusion learning of semantic and behavioral information. Specifically, BISTRO is composed of three stages: 1) coarse-grained semantic clustering, 2) fine-grained job preference extraction, and 3) personalized top-$k$ job recommendation. Initially, BISTRO segments the user interaction sequence into sessions and leverages session-based semantic clustering to achieve broad identification of person-job matching. Subsequently, we design a hypergraph wavelet learning method to capture the nuanced job preference drift. To mitigate the effect of noise in interactions caused by frequent preference drift, we innovatively propose an adaptive wavelet filtering technique to remove noisy interaction. Finally, a recurrent neural network is utilized to analyze session-based interaction for inferring personalized preferences. Extensive experiments on three real-world offline recruitment datasets demonstrate the significant performances of our framework. Significantly, BISTRO also excels in online experiments, affirming its effectiveness in live recruitment settings. This dual success underscores the robustness and adaptability of BISTRO. The source code is available at https://github.com/Applied-Machine-Learning-Lab/BISTRO.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
huo应助lin采纳,获得10
1秒前
2秒前
2秒前
sunny完成签到 ,获得积分10
3秒前
静谧180完成签到 ,获得积分10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
重要的小夏给重要的小夏的求助进行了留言
4秒前
丰知然应助科研通管家采纳,获得10
4秒前
NexusExplorer应助科研通管家采纳,获得10
4秒前
丰知然应助科研通管家采纳,获得10
4秒前
上官若男应助科研通管家采纳,获得10
4秒前
cocolu应助科研通管家采纳,获得10
4秒前
香蕉觅云应助科研通管家采纳,获得10
4秒前
丰知然应助科研通管家采纳,获得10
4秒前
bkagyin应助科研通管家采纳,获得10
4秒前
wen应助科研通管家采纳,获得10
4秒前
丰知然应助科研通管家采纳,获得10
4秒前
cocolu应助科研通管家采纳,获得10
4秒前
NZH完成签到,获得积分10
4秒前
丰知然应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
丰知然应助科研通管家采纳,获得10
5秒前
左诗应助科研通管家采纳,获得10
5秒前
动次打次应助科研通管家采纳,获得10
5秒前
丰知然应助科研通管家采纳,获得10
5秒前
6秒前
123发布了新的文献求助10
8秒前
寻道图强应助ajjyou采纳,获得50
9秒前
9秒前
等待半烟完成签到 ,获得积分10
10秒前
健忘的小懒虫完成签到,获得积分10
13秒前
qqqq完成签到,获得积分10
15秒前
摘星的小孩完成签到,获得积分10
17秒前
小鱼爱吃肉应助ke采纳,获得10
19秒前
orixero应助ms采纳,获得10
19秒前
mingyue应助zorro3574采纳,获得100
19秒前
19秒前
20秒前
安静幻枫完成签到,获得积分10
22秒前
23秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3308459
求助须知:如何正确求助?哪些是违规求助? 2941791
关于积分的说明 8505743
捐赠科研通 2616655
什么是DOI,文献DOI怎么找? 1429755
科研通“疑难数据库(出版商)”最低求助积分说明 663888
邀请新用户注册赠送积分活动 648928