Adapting Job Recommendations to User Preference Drift with Behavioral-Semantic Fusion Learning

计算机科学 偏爱 聚类分析 稳健性(进化) 推荐系统 机器学习 会话(web分析) 匹配(统计) 人工智能 语义匹配 情报检索 万维网 经济 微观经济学 化学 统计 基因 生物化学 数学
作者
Xiao Han,Chen Zhu,Xiao Hu,Chuan Qin,Xiangyu Zhao,Hengshu Zhu
标识
DOI:10.1145/3637528.3671759
摘要

Job recommender systems are crucial for aligning job opportunities with job-seekers in online job-seeking. However, users tend to adjust their job preferences to secure employment opportunities continually, which limits the performance of job recommendations. The inherent frequency of preference drift poses a challenge to promptly and precisely capture user preferences. To address this issue, we propose a novel session-based framework, BISTRO, to timely model user preference through fusion learning of semantic and behavioral information. Specifically, BISTRO is composed of three stages: 1) coarse-grained semantic clustering, 2) fine-grained job preference extraction, and 3) personalized top-$k$ job recommendation. Initially, BISTRO segments the user interaction sequence into sessions and leverages session-based semantic clustering to achieve broad identification of person-job matching. Subsequently, we design a hypergraph wavelet learning method to capture the nuanced job preference drift. To mitigate the effect of noise in interactions caused by frequent preference drift, we innovatively propose an adaptive wavelet filtering technique to remove noisy interaction. Finally, a recurrent neural network is utilized to analyze session-based interaction for inferring personalized preferences. Extensive experiments on three real-world offline recruitment datasets demonstrate the significant performances of our framework. Significantly, BISTRO also excels in online experiments, affirming its effectiveness in live recruitment settings. This dual success underscores the robustness and adaptability of BISTRO. The source code is available at https://github.com/Applied-Machine-Learning-Lab/BISTRO.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
车道出发布了新的文献求助10
3秒前
李健的小迷弟应助李春霞采纳,获得10
3秒前
大模型应助陈黑手采纳,获得10
6秒前
7秒前
8秒前
量子星尘发布了新的文献求助10
10秒前
11秒前
zli发布了新的文献求助10
11秒前
Tiako发布了新的文献求助10
11秒前
14秒前
15秒前
16秒前
直率三颜发布了新的文献求助20
18秒前
18秒前
雨安发布了新的文献求助10
19秒前
斯文败类应助Tiako采纳,获得10
24秒前
ww发布了新的文献求助10
25秒前
weing发布了新的文献求助10
25秒前
summer夏完成签到,获得积分10
26秒前
汉堡包应助康兴宇采纳,获得10
26秒前
27秒前
27秒前
29秒前
卷心菜宝发布了新的文献求助10
30秒前
量子星尘发布了新的文献求助10
30秒前
Tiako完成签到,获得积分10
30秒前
33秒前
彭于晏应助灼灼朗朗采纳,获得10
34秒前
华仔应助勤奋的缘郡采纳,获得10
34秒前
35秒前
乐观的眼睛完成签到,获得积分10
36秒前
Albert007完成签到,获得积分10
36秒前
科研通AI6应助weing采纳,获得10
38秒前
40秒前
CipherSage应助lll采纳,获得10
42秒前
情怀应助科研通管家采纳,获得10
44秒前
脑洞疼应助科研通管家采纳,获得10
44秒前
赘婿应助科研通管家采纳,获得10
44秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5554400
求助须知:如何正确求助?哪些是违规求助? 4638981
关于积分的说明 14654750
捐赠科研通 4580755
什么是DOI,文献DOI怎么找? 2512465
邀请新用户注册赠送积分活动 1487263
关于科研通互助平台的介绍 1458151