Adapting Job Recommendations to User Preference Drift with Behavioral-Semantic Fusion Learning

计算机科学 偏爱 聚类分析 稳健性(进化) 推荐系统 机器学习 会话(web分析) 匹配(统计) 人工智能 语义匹配 情报检索 万维网 经济 微观经济学 化学 统计 基因 生物化学 数学
作者
Xiao Han,Chen Zhu,Xiao Hu,Chuan Qin,Xiangyu Zhao,Hengshu Zhu
标识
DOI:10.1145/3637528.3671759
摘要

Job recommender systems are crucial for aligning job opportunities with job-seekers in online job-seeking. However, users tend to adjust their job preferences to secure employment opportunities continually, which limits the performance of job recommendations. The inherent frequency of preference drift poses a challenge to promptly and precisely capture user preferences. To address this issue, we propose a novel session-based framework, BISTRO, to timely model user preference through fusion learning of semantic and behavioral information. Specifically, BISTRO is composed of three stages: 1) coarse-grained semantic clustering, 2) fine-grained job preference extraction, and 3) personalized top-$k$ job recommendation. Initially, BISTRO segments the user interaction sequence into sessions and leverages session-based semantic clustering to achieve broad identification of person-job matching. Subsequently, we design a hypergraph wavelet learning method to capture the nuanced job preference drift. To mitigate the effect of noise in interactions caused by frequent preference drift, we innovatively propose an adaptive wavelet filtering technique to remove noisy interaction. Finally, a recurrent neural network is utilized to analyze session-based interaction for inferring personalized preferences. Extensive experiments on three real-world offline recruitment datasets demonstrate the significant performances of our framework. Significantly, BISTRO also excels in online experiments, affirming its effectiveness in live recruitment settings. This dual success underscores the robustness and adaptability of BISTRO. The source code is available at https://github.com/Applied-Machine-Learning-Lab/BISTRO.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
温暖小霸王应助优美橘子采纳,获得10
2秒前
st发布了新的文献求助10
3秒前
无花果应助努力的学采纳,获得10
3秒前
左语发布了新的文献求助10
4秒前
科目三应助June采纳,获得10
4秒前
hujiajun完成签到,获得积分20
4秒前
领导范儿应助yanyan采纳,获得10
4秒前
seeyoung666发布了新的文献求助30
5秒前
她说肚子是吃大的i完成签到,获得积分10
7秒前
灯箱发布了新的文献求助20
8秒前
9秒前
9秒前
天天快乐应助左语采纳,获得10
10秒前
El完成签到 ,获得积分10
11秒前
12秒前
zz完成签到,获得积分20
12秒前
13秒前
13秒前
13秒前
wzm发布了新的文献求助10
14秒前
科目三应助weixiao采纳,获得10
14秒前
61完成签到,获得积分20
15秒前
16秒前
KLAY发布了新的文献求助10
16秒前
小蘑菇应助yyy采纳,获得10
16秒前
17秒前
大个应助飞快的曼安采纳,获得10
17秒前
努力的学发布了新的文献求助10
18秒前
Hibiscus95发布了新的文献求助30
18秒前
unique完成签到,获得积分10
19秒前
19秒前
19秒前
ssong完成签到,获得积分10
19秒前
今后应助酷炫觅松采纳,获得10
19秒前
左语完成签到,获得积分10
20秒前
Asteroid发布了新的文献求助10
21秒前
脑洞疼应助zhp采纳,获得10
21秒前
大力盼易发布了新的文献求助10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5594359
求助须知:如何正确求助?哪些是违规求助? 4680082
关于积分的说明 14812808
捐赠科研通 4646997
什么是DOI,文献DOI怎么找? 2534901
邀请新用户注册赠送积分活动 1502862
关于科研通互助平台的介绍 1469514