Instruct-IPT: All-in-One Image Processing Transformer via Weight Modulation

变压器 调制(音乐) 计算机科学 电气工程 工程类 物理 声学 电压
作者
Yuchuan Tian,Jianhong Han,Hanting Chen,Yuanyuan Xi,G. Zhang,Jie Hu,Chao Xu,Yunhe Wang
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2407.00676
摘要

Due to the unaffordable size and intensive computation costs of low-level vision models, All-in-One models that are designed to address a handful of low-level vision tasks simultaneously have been popular. However, existing All-in-One models are limited in terms of the range of tasks and performance. To overcome these limitations, we propose Instruct-IPT -- an All-in-One Image Processing Transformer that could effectively address manifold image restoration tasks with large inter-task gaps, such as denoising, deblurring, deraining, dehazing, and desnowing. Rather than popular feature adaptation methods, we propose weight modulation that adapts weights to specific tasks. Firstly, we figure out task-sensitive weights via a toy experiment and introduce task-specific biases on top of them. Secondly, we conduct rank analysis for a good compression strategy and perform low-rank decomposition on the biases. Thirdly, we propose synchronous training that updates the task-general backbone model and the task-specific biases simultaneously. In this way, the model is instructed to learn general and task-specific knowledge. Via our simple yet effective method that instructs the IPT to be task experts, Instruct-IPT could better cooperate between tasks with distinct characteristics at humble costs. Further, we propose to maneuver Instruct-IPT with text instructions for better user interfaces. We have conducted experiments on Instruct-IPT to demonstrate the effectiveness of our method on manifold tasks, and we have effectively extended our method to diffusion denoisers as well. The code is available at https://github.com/huawei-noah/Pretrained-IPT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
stepha发布了新的文献求助10
2秒前
kevin完成签到 ,获得积分10
2秒前
善学以致用应助啦啦啦采纳,获得10
3秒前
量子星尘发布了新的文献求助10
4秒前
kyoko886发布了新的文献求助10
6秒前
8秒前
8秒前
312034发布了新的文献求助30
8秒前
8秒前
9秒前
10秒前
满家归寻完成签到 ,获得积分10
10秒前
司空笑白发布了新的文献求助10
13秒前
stepha完成签到,获得积分10
13秒前
yeyeye发布了新的文献求助10
13秒前
云之南完成签到,获得积分20
14秒前
14秒前
啦啦啦发布了新的文献求助10
15秒前
15秒前
18秒前
kyoko886完成签到,获得积分10
18秒前
wu8577应助小猪玉采纳,获得10
18秒前
wenxian完成签到,获得积分10
21秒前
xiaozhao发布了新的文献求助150
21秒前
21秒前
21秒前
FashionBoy应助司空笑白采纳,获得10
23秒前
24秒前
25秒前
Merlin应助陈三三采纳,获得30
25秒前
嗯嗯嗯发布了新的文献求助10
28秒前
白羊完成签到,获得积分10
28秒前
chensihao发布了新的文献求助10
29秒前
谦让的莆完成签到 ,获得积分10
29秒前
李爱国应助xiaohong采纳,获得10
30秒前
32秒前
梦灵发布了新的文献求助10
33秒前
123456发布了新的文献求助10
33秒前
充电宝应助Wang采纳,获得10
34秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958114
求助须知:如何正确求助?哪些是违规求助? 3504298
关于积分的说明 11117743
捐赠科研通 3235614
什么是DOI,文献DOI怎么找? 1788403
邀请新用户注册赠送积分活动 871211
科研通“疑难数据库(出版商)”最低求助积分说明 802547