Instruct-IPT: All-in-One Image Processing Transformer via Weight Modulation

变压器 调制(音乐) 计算机科学 电气工程 工程类 物理 声学 电压
作者
Yuchuan Tian,Jianhong Han,Hanting Chen,Yuanyuan Xi,G. Zhang,Jie Hu,Chao Xu,Yunhe Wang
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2407.00676
摘要

Due to the unaffordable size and intensive computation costs of low-level vision models, All-in-One models that are designed to address a handful of low-level vision tasks simultaneously have been popular. However, existing All-in-One models are limited in terms of the range of tasks and performance. To overcome these limitations, we propose Instruct-IPT -- an All-in-One Image Processing Transformer that could effectively address manifold image restoration tasks with large inter-task gaps, such as denoising, deblurring, deraining, dehazing, and desnowing. Rather than popular feature adaptation methods, we propose weight modulation that adapts weights to specific tasks. Firstly, we figure out task-sensitive weights via a toy experiment and introduce task-specific biases on top of them. Secondly, we conduct rank analysis for a good compression strategy and perform low-rank decomposition on the biases. Thirdly, we propose synchronous training that updates the task-general backbone model and the task-specific biases simultaneously. In this way, the model is instructed to learn general and task-specific knowledge. Via our simple yet effective method that instructs the IPT to be task experts, Instruct-IPT could better cooperate between tasks with distinct characteristics at humble costs. Further, we propose to maneuver Instruct-IPT with text instructions for better user interfaces. We have conducted experiments on Instruct-IPT to demonstrate the effectiveness of our method on manifold tasks, and we have effectively extended our method to diffusion denoisers as well. The code is available at https://github.com/huawei-noah/Pretrained-IPT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
seventonight2完成签到,获得积分10
刚刚
顾矜应助xwc采纳,获得10
刚刚
Relax发布了新的文献求助10
刚刚
微笑的语梦完成签到 ,获得积分10
1秒前
落寞的紫山完成签到,获得积分10
1秒前
杨大大发布了新的文献求助10
1秒前
BOSSJING完成签到,获得积分10
1秒前
Jasper应助搞怪的人龙采纳,获得10
2秒前
2秒前
benj完成签到,获得积分10
2秒前
2秒前
zoko发布了新的文献求助10
2秒前
周老八发布了新的文献求助10
2秒前
2秒前
小杨爱吃羊完成签到 ,获得积分10
2秒前
lszhw完成签到,获得积分10
2秒前
2秒前
3秒前
3秒前
3秒前
美好乌龟完成签到 ,获得积分10
3秒前
3秒前
烟雨行舟完成签到,获得积分10
4秒前
4秒前
4秒前
搜集达人应助刘星星采纳,获得30
5秒前
赘婿应助顺利水杯采纳,获得10
5秒前
5秒前
明亮的溪灵完成签到,获得积分10
5秒前
6秒前
6秒前
充电宝应助01259采纳,获得10
6秒前
天真的莺完成签到,获得积分10
7秒前
想要赚大钱完成签到,获得积分10
7秒前
大模型应助徐慕源采纳,获得10
7秒前
格格星发布了新的文献求助10
9秒前
sunnyyty发布了新的文献求助10
10秒前
tanjianxin发布了新的文献求助10
10秒前
JIE发布了新的文献求助10
10秒前
安娜完成签到,获得积分10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740