Instruct-IPT: All-in-One Image Processing Transformer via Weight Modulation

变压器 调制(音乐) 计算机科学 电气工程 工程类 物理 声学 电压
作者
Yuchuan Tian,Jianhong Han,Hanting Chen,Yuanyuan Xi,G. Zhang,Jie Hu,Chao Xu,Yunhe Wang
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2407.00676
摘要

Due to the unaffordable size and intensive computation costs of low-level vision models, All-in-One models that are designed to address a handful of low-level vision tasks simultaneously have been popular. However, existing All-in-One models are limited in terms of the range of tasks and performance. To overcome these limitations, we propose Instruct-IPT -- an All-in-One Image Processing Transformer that could effectively address manifold image restoration tasks with large inter-task gaps, such as denoising, deblurring, deraining, dehazing, and desnowing. Rather than popular feature adaptation methods, we propose weight modulation that adapts weights to specific tasks. Firstly, we figure out task-sensitive weights via a toy experiment and introduce task-specific biases on top of them. Secondly, we conduct rank analysis for a good compression strategy and perform low-rank decomposition on the biases. Thirdly, we propose synchronous training that updates the task-general backbone model and the task-specific biases simultaneously. In this way, the model is instructed to learn general and task-specific knowledge. Via our simple yet effective method that instructs the IPT to be task experts, Instruct-IPT could better cooperate between tasks with distinct characteristics at humble costs. Further, we propose to maneuver Instruct-IPT with text instructions for better user interfaces. We have conducted experiments on Instruct-IPT to demonstrate the effectiveness of our method on manifold tasks, and we have effectively extended our method to diffusion denoisers as well. The code is available at https://github.com/huawei-noah/Pretrained-IPT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LSzhai完成签到,获得积分10
刚刚
1秒前
打我呀发布了新的文献求助10
2秒前
3秒前
无情山水发布了新的文献求助10
4秒前
枯藤老树昏呀完成签到,获得积分10
5秒前
bobo发布了新的文献求助10
6秒前
李爱国应助小黑爱搞科研采纳,获得10
7秒前
oui发布了新的文献求助10
8秒前
myyy完成签到 ,获得积分10
9秒前
10秒前
小宇完成签到,获得积分10
12秒前
kyttytk完成签到,获得积分10
12秒前
好好学习完成签到,获得积分10
13秒前
djh完成签到,获得积分10
14秒前
holo完成签到,获得积分10
14秒前
17秒前
orixero应助dong采纳,获得10
17秒前
瘦瘦马里奥完成签到 ,获得积分10
20秒前
傲娇的妮妮完成签到,获得积分10
20秒前
asdfj应助等待的觅珍采纳,获得50
20秒前
Yuxuan发布了新的文献求助10
22秒前
英俊的铭应助dulong采纳,获得10
22秒前
23秒前
荷兰香猪完成签到,获得积分10
25秒前
26秒前
Sasap关注了科研通微信公众号
27秒前
28秒前
Huuu完成签到,获得积分10
29秒前
小二郎应助锦鲤采纳,获得10
29秒前
29秒前
默默曼冬完成签到,获得积分10
30秒前
ZYC发布了新的文献求助10
31秒前
32秒前
32秒前
Holleay123完成签到,获得积分10
32秒前
烛火发布了新的文献求助10
32秒前
scott910806发布了新的文献求助10
33秒前
33秒前
小马甲应助AbA采纳,获得10
34秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135027
求助须知:如何正确求助?哪些是违规求助? 2785983
关于积分的说明 7774640
捐赠科研通 2441787
什么是DOI,文献DOI怎么找? 1298184
科研通“疑难数据库(出版商)”最低求助积分说明 625088
版权声明 600825