亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

MR-Based Radiomics Predicts CDK6 Expression and Prognostic Value in High-grade Glioma

无线电技术 胶质瘤 细胞周期蛋白依赖激酶6 医学 肿瘤科 价值(数学) 胶质母细胞瘤 内科学 癌症研究 放射科 计算机科学 癌症 细胞周期蛋白依赖激酶 机器学习 细胞周期
作者
Chen Sun,Chenggang Jiang,Xi Wang,Shunchang Ma,Dainan Zhang,Jia Wang
出处
期刊:Academic Radiology [Elsevier]
被引量:1
标识
DOI:10.1016/j.acra.2024.06.006
摘要

Rationale and ObjectivesThis study aims to assess the prognostic value of Cyclin-dependent kinases 6 (CDK6) expression levels and establish a machine learning-based radiomics model for predicting the expression levels of CDK6 in high-grade gliomas (HGG).Materials and MethodsClinical parameters and genomic data were extracted from 310 HGG patients in the Cancer Genome Atlas (TCGA) database and 27 patients in the Repository of Molecular Brain Neoplasia Data (REMBRANDT) database. Univariate and multivariate Cox regression, as well as Kaplan–Meier analysis, were performed for prognosis analysis. The correlation between immune cell Infiltration with CDK6 was assessed using spearman correlation analysis. Radiomic features were extracted from contrast-enhanced magnetic resonance imaging (CE-MRI) in the Cancer Imaging Archive (TCIA) database (n = 82) and REMBRANDT database (n = 27). Logistic regression (LR) and support vector machine (SVM) were employed to establish the radiomics model for predicting CDK6 expression. Receiver operating characteristic curve (ROC), calibration curve, and decision curve analysis (DCA) were utilized to assess the predictive performance of the radiomics model. Generate radiomic scores (RS) based on the LR model. An RS-based nomogram was constructed to predict the prognosis of HGG.ResultsCDK6 was significantly overexpressed in HGG tissues and was related to lower overall survival. A significant elevation in infiltrating M0 macrophages was observed in the CDK6 high group (P < 0.001). The LR radiomics model for the prediction of CDK6 expression levels (AUC = 0.810 in the training cohort, AUC = 0.784 after cross-validation, AUC = 0.750 in the testing cohort) was established utilizing three radiomic features. The predictive efficiencies of the RS-based nomogram, as measured by AUC, were 0.769 for 1-year, 0.815 for 3-year, and 0.780 for 5-year, respectively.ConclusionThe expression level of CDK6 can impact the prognosis of patients with HGG. The expression level of HGG can be noninvasively prognosticated utilizing a radiomics model. This study aims to assess the prognostic value of Cyclin-dependent kinases 6 (CDK6) expression levels and establish a machine learning-based radiomics model for predicting the expression levels of CDK6 in high-grade gliomas (HGG). Clinical parameters and genomic data were extracted from 310 HGG patients in the Cancer Genome Atlas (TCGA) database and 27 patients in the Repository of Molecular Brain Neoplasia Data (REMBRANDT) database. Univariate and multivariate Cox regression, as well as Kaplan–Meier analysis, were performed for prognosis analysis. The correlation between immune cell Infiltration with CDK6 was assessed using spearman correlation analysis. Radiomic features were extracted from contrast-enhanced magnetic resonance imaging (CE-MRI) in the Cancer Imaging Archive (TCIA) database (n = 82) and REMBRANDT database (n = 27). Logistic regression (LR) and support vector machine (SVM) were employed to establish the radiomics model for predicting CDK6 expression. Receiver operating characteristic curve (ROC), calibration curve, and decision curve analysis (DCA) were utilized to assess the predictive performance of the radiomics model. Generate radiomic scores (RS) based on the LR model. An RS-based nomogram was constructed to predict the prognosis of HGG. CDK6 was significantly overexpressed in HGG tissues and was related to lower overall survival. A significant elevation in infiltrating M0 macrophages was observed in the CDK6 high group (P < 0.001). The LR radiomics model for the prediction of CDK6 expression levels (AUC = 0.810 in the training cohort, AUC = 0.784 after cross-validation, AUC = 0.750 in the testing cohort) was established utilizing three radiomic features. The predictive efficiencies of the RS-based nomogram, as measured by AUC, were 0.769 for 1-year, 0.815 for 3-year, and 0.780 for 5-year, respectively. The expression level of CDK6 can impact the prognosis of patients with HGG. The expression level of HGG can be noninvasively prognosticated utilizing a radiomics model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
林利芳完成签到 ,获得积分10
5秒前
13秒前
17秒前
wuyuan9588完成签到 ,获得积分10
1分钟前
xiewuhua完成签到,获得积分10
1分钟前
1分钟前
April完成签到 ,获得积分10
1分钟前
WWXWWX发布了新的文献求助30
2分钟前
阔达的乘云完成签到 ,获得积分10
2分钟前
WWXWWX发布了新的文献求助10
2分钟前
2分钟前
Orange应助阔达的乘云采纳,获得10
3分钟前
4分钟前
4分钟前
WWXWWX发布了新的文献求助30
4分钟前
supermaltose完成签到,获得积分10
4分钟前
eccentric发布了新的文献求助20
4分钟前
eccentric完成签到,获得积分10
5分钟前
哈哈发布了新的文献求助10
6分钟前
爆米花应助摇摇猪采纳,获得10
6分钟前
6分钟前
tuanheqi应助李剑鸿采纳,获得500
6分钟前
Magali应助科研通管家采纳,获得20
7分钟前
烟花应助科研通管家采纳,获得10
7分钟前
Magali应助科研通管家采纳,获得10
7分钟前
李剑鸿发布了新的文献求助1000
7分钟前
8分钟前
摇摇猪发布了新的文献求助10
8分钟前
8分钟前
杰青发布了新的文献求助10
8分钟前
李健的小迷弟应助摇摇猪采纳,获得10
8分钟前
杰青完成签到,获得积分10
8分钟前
小青新完成签到 ,获得积分10
8分钟前
8分钟前
9分钟前
xz完成签到 ,获得积分10
9分钟前
玛卡巴卡发布了新的文献求助10
9分钟前
9分钟前
摇摇猪发布了新的文献求助10
9分钟前
英姑应助孙太阳采纳,获得10
9分钟前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Актуализированная стратиграфическая схема триасовых отложений Прикаспийского региона. Объяснительная записка 360
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3167188
求助须知:如何正确求助?哪些是违规求助? 2818678
关于积分的说明 7921864
捐赠科研通 2478444
什么是DOI,文献DOI怎么找? 1320323
科研通“疑难数据库(出版商)”最低求助积分说明 632748
版权声明 602438